Skip to main content

Advertisement

Log in

Natural photosystems from an engineer’s perspective: length, time, and energy scales of charge and energy transfer

  • Review Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The vast structural and functional information database of photosynthetic enzymes includes, in addition to detailed kinetic records from decades of research on physical processes and chemical reaction-pathways, a variety of high and medium resolution crystal structures of key photosynthetic enzymes. Here, it is examined from an engineer’s point of view with the long-term goal of reproducing the key features of natural photosystems in novel biological and non-biological solar-energy conversion systems. This survey reveals that the basic physics of the transfer processes, namely, the time constraints imposed by the rates of incoming photon flux and the various decay processes allow for a large degree of tolerance in the engineering parameters. Furthermore, the requirements to guarantee energy and electron transfer rates that yield high efficiency in natural photosystems are largely met by control of distance between chromophores and redox cofactors. This underlines a critical challenge for projected de novo designed constructions, that is, the control of spatial organization of cofactor molecules within dense array of different cofactors, some well within 1 nm from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alegria G, Dutton PL (1991) Langmuir-blodgett monolayer films of bacterial photosynthetic membranes and isolated reaction centers – preparation, spectrophotometric and electrochemical characterization. 1. Biochim Biophys Acta 1057:239–257

    Article  PubMed  CAS  Google Scholar 

  • ASTM International ASTM G173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. Available at http://rredc.nrel.gov/solar/spectra/am1.5/

  • Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13:R15–R28

    Article  CAS  Google Scholar 

  • Balzani V, Credi A, Venturi M (2002) The bottom-up approach to molecular-level devices and machines. Chem Eur J 8:5524–5532

    Article  CAS  Google Scholar 

  • Barber J, Archer MD (2001) P680, the primary electron donor of photosystem II. J Photochem Photobiol A 142:97–106

    Article  CAS  Google Scholar 

  • Beddard GS (1998) Excitations and excitons in photosystem I. Philos Trans R Soc A 356:421–448

    Article  CAS  Google Scholar 

  • Beddard GS, Porter G (1976) Concentration quenching in Chlorophyll. Nature 260:366–367

    Article  CAS  Google Scholar 

  • Bottin H, Mathis P (1985) Interaction of plastocyanin with the photosystem-I reaction center – a kinetic-study by flash absorption-spectroscopy. Biochemistry 24:6453–6460

    Article  CAS  Google Scholar 

  • Bowie JU (2000) Understanding membrane protein structure by design. Nature Struct Biol 7:91–94

    Article  PubMed  CAS  Google Scholar 

  • Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434:625–628

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain AK, Faham S, Yohannan S, Bowie JU (2003) Construction of helix-bundle membrane proteins. Adv Protein Chem 63:19–46

    PubMed  CAS  Google Scholar 

  • Damjanovic A, Ritz T, Schulten K (2000) Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae. Biophys J 79:1695–1705

    Article  PubMed  CAS  Google Scholar 

  • DeGrado WF, Summa CM, Pavone V, Nastri F, Lombardi A (1999) De novo design and structural characterization of proteins and metalloproteins. Annu Rev Biochem 68:779–819

    Article  PubMed  CAS  Google Scholar 

  • Dekker JP, Van Grondelle R (2000) Primary charge separation in photosystem II. Photosynth Res 63:195–208

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WFJ, Chisholm DA (2001) Site-directed mutations at D1-His198 and D2-His 97 of photosystem II in synechocystis PCC 6803: Sites of primary charge separation and cation and triplet stabilization. Biochemistry 40:9265–9281

    Article  PubMed  CAS  Google Scholar 

  • Faller P, Debus RJ, Brettel K, Sugiura M, Rutherford AW, Boussac A (2001) Rapid formation of the stable tyrosyl radical in photosystem II. Proc Natl Acad Sci USA 98:14368–14373

    Article  PubMed  CAS  Google Scholar 

  • Farchaus JW, Wachtveitl J, Mathis P, Oesterhelt D (1993) Tyrosine-162 of the photosynthetic reaction-center L-subunit plays a critical role in the cytochrome-C(2) mediated rereduction of the photooxidized bacteriochlorophyll dimer in rhodobacter-sphaeroides. 1. Site-directed mutagenesis and initial characterization. Biochemistry 32:10885–10893

    Article  PubMed  CAS  Google Scholar 

  • Florin S, Tiede DM (1987) Optical and EPR characterization of reduced bacteriopheophytin redox states in reaction centers of Rps. sphaeroides R-26. In: Biggins J (ed) Prog photosynth Res. Nijhoff, Dorderecht

    Google Scholar 

  • Förster T (1959) Transfer mechanisms of electronic excitation. Discuss Faraday Soc 27:7–17

    Article  Google Scholar 

  • Gest H, Blankenship RE (2004) Time line of discoveries: anoxygenic bacterial photosynthesis. Photosynth Res 80:59–70

    Article  PubMed  CAS  Google Scholar 

  • Goetzberger A, Hebling C, Schock HW (2003) Photovoltaic materials, history, status and outlook. Mater Sci Eng Rep 40:1–46

    Article  Google Scholar 

  • Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) Advances in photosynthesis: the molecular biology of cyanobacteria. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  • Govindjee, Krogmann D (2004) Discoveries in oxygenic photosynthesis (1727-2003) a perspective. Photosynth Res 80:15–57

  • Guergova-Kuras M, Boudreaux B, Joliot A, Joliot P, Redding K (2001) Evidence for two active branches for electron transfer in photosystem I. Proc Natl Acad Sci USA 98:4437–4442

    Article  PubMed  CAS  Google Scholar 

  • Hu XC, Ritz T, Damjanovic A, Autenrieth F, Schulten K (2002) Photosynthetic apparatus of purple bacteria. Q Rev Biophys 35:1–62

    Article  PubMed  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Iwaki M, Ikegami I (2001) Modification of photosystem I reaction center by the extraction and exchange of chlorophylls and quinones. Biochim Biophys Acta-Bioenerg 1507:115–138

    Article  CAS  Google Scholar 

  • Jeans C, Schilstra MJ, Klug DR (2002) The temperature dependence of P680+ reduction in oxygen-evolving photosystern. Biochemistry 41:5015–5023

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Klimov VV (2003) Discovery of pheophytin function in the photosynthetic energy conversion as the primary electron acceptor of photosystem II. Photosynth Res 76:247–253

    Article  PubMed  CAS  Google Scholar 

  • Knox RS (1994) Spectral effects of exciton splitting in statistical pairs. J Phys Chem 98:7270–7273

    Article  CAS  Google Scholar 

  • Kropacheva TN, Hoff AJ (2001) Electrochemical oxidation of bacteriochlorophyll a in reaction centers and antenna complexes of photosynthetic bacteria. J Phys Chem B 105:5536–5545

    Article  CAS  Google Scholar 

  • Lavergne J, Joliot P (1996) Dissipation in bioenergetic electron transfer chains. Photosynth Res 48:127–138

    Article  CAS  Google Scholar 

  • Law CJ, Cogdell RJ (1998) The effect of chemical oxidation on the fluorescence of the LH1 (B880) complex from the purple bacterium Rhodobium marimum. FEBS Lett 432:27–30

    Article  PubMed  CAS  Google Scholar 

  • Lehn JM (2002) Toward complex matter: supramolecular chemistry and self-organization. Proc Natl Acad Sci USA 99:4763–4768

    Article  PubMed  CAS  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735

    Article  PubMed  CAS  Google Scholar 

  • Markvart T (2000) Light harvesting for quantum solar energy conversion. Prog Quant Electron 24:107–186

    Article  CAS  Google Scholar 

  • Montano GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB, Blankenship RE (2003) Characterization of chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85:2560–2565

    PubMed  CAS  Google Scholar 

  • Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron-transfer. Nature 355:796–802

    Article  PubMed  CAS  Google Scholar 

  • Moser CC, Page CC, Farid R, Dutton PL (1995) Biological electron-transfer. J Bioenerg Biomembr 27:263–274

    Article  PubMed  CAS  Google Scholar 

  • Moser CC, Page CC, Dutton PL (2001) Photosynthesis: bacterial reaction center. In: Balzani V (ed) Electron transfer in chemistry. Wiley-VCH, New York

    Google Scholar 

  • Moser CC, Page CC, Cogdell RJ, Barber J, Wraight CA, Dutton PL (2003) Length, time, and energy scales of photosystems. Adv Protein Chem 63:71–109

    Article  PubMed  CAS  Google Scholar 

  • Moser CC, Page CC, Dutton PL (2005) Tunneling in PSII. Photochem Photobiol Sci 4:933–939

    Article  PubMed  CAS  Google Scholar 

  • Musewald C, Hartwich G, Pollinger-Dammer F, Lossau H, Scheer H, Michel-Beyerle ME (1998) Time-resolved spectral investigation of bacteriochlorophyll a and its transmetalated derivatives [Zn]-bacteriochlorophyll a and [Pd]-bacteriochlorophyll a. J Phys Chem B 102:8336–8342

    Article  CAS  Google Scholar 

  • Noy D, Moser CC, Dutton PL (2006) Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales. Biochim Biophys Acta-Bioenerg 1757:90–105

    Article  CAS  Google Scholar 

  • Page CC, Moser CC, Chen XX, Dutton PL (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402:47–52

    Article  PubMed  CAS  Google Scholar 

  • Parson WW, Chu ZT, Warshel A (1990) Electrostatic control of charge separation in bacterial photosynthesis. Biochim Biophys Acta 1017:251–272

    Article  PubMed  CAS  Google Scholar 

  • Prokhorenko VI, Holzwarth AR (2000) Primary processes and structure of the photosystem II reaction center: a photon echo study. J Phys Chem B 104:11563–11578

    Article  CAS  Google Scholar 

  • Prokhorenko VI, Steensgaard DB, Holzwarth AF (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria chloroflexus aurantiacus and chlorobium tepidum. Biophys J 79:2105–2120

    PubMed  CAS  Google Scholar 

  • Prokhorenko VI, Steensgaard DB, Holzwarth AR (2003) Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra. Biophys J 85:3173–3186

    PubMed  CAS  Google Scholar 

  • Psencik J, Ma YZ, Arellano JB, Hala J, Gillbro T (2003) Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides. Biophys J 84:1161–1179

    PubMed  CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41:8518–8527

    Article  PubMed  CAS  Google Scholar 

  • Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346

    Article  PubMed  CAS  Google Scholar 

  • Scholes GD (2002) Designing light-harvesting antenna systems based on superradiant molecular aggregates. Chem Phys 275:373–386

    Article  CAS  Google Scholar 

  • Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54:57–87

    Article  PubMed  CAS  Google Scholar 

  • Sener MK, Lu DY, Ritz T, Park S, Fromme P, Schulten K (2002) Robustness and optimality of light harvesting in cyanobacterial photosystem I. J Phys Chem B 106:7948–7960

    Article  CAS  Google Scholar 

  • Shopes RJ, Levine LMA, Holten D, Wraight CA (1987) Kinetics of oxidation of the bound cytochromes in reaction centers from Rhodopseudomonas-Viridis. Photosynth Res 12:165–180

    Article  CAS  Google Scholar 

  • Srivatsan N, Weber S, Kolbasov D, Norris JR (2003a) Exploring charge migration in light-harvesting complexes using electron paramagnetic resonance line narrowing. J Phys Chem B 107:2127–2138

    Article  CAS  Google Scholar 

  • Srivatsan N, Kolbasov D, Ponomarenko N, Weber S, Ostafin AE, Norris JR (2003b) Cryogenic charge transport in oxidized purple bacterial light-harvesting 1 complexes. J Phys Chem B 107:7867–7876

    Article  CAS  Google Scholar 

  • Tommos C, Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta-Bioenerg 1458:199–219

    Article  CAS  Google Scholar 

  • Turro NJ (1991) Modern molecular photochemistry. University Science Books, Sausalito, CA

    Google Scholar 

  • Vangrondelle R (1985) Excitation-energy transfer, trapping and annihilation in photosynthetic systems. Biochim Biophys Acta 811:147–195

    CAS  Google Scholar 

  • Vangrondelle R, Dekker JP, Gillbro T, Sundstrom V (1994) Energy-transfer and trapping in photosynthesis. Biochim Biophys Acta-Bioenerg 1187:1–65

    Article  Google Scholar 

  • Vasil’ev S, Bruce D (2004) Optimization and evolution of light harvesting in photosynthesis: the role of antenna chlorophyll conserved between photosystem II and photosystem I. Plant Cell 16:3059–3068

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL

    Google Scholar 

  • Yang M, Damjanovic A, Vaswani HM, Fleming GR (2003) Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85:140–158

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author acknowledges a career development award by the human frontiers science program organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Noy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noy, D. Natural photosystems from an engineer’s perspective: length, time, and energy scales of charge and energy transfer. Photosynth Res 95, 23–35 (2008). https://doi.org/10.1007/s11120-007-9269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9269-7

Keywords

Navigation