Skip to main content
Log in

The essential role of phosphatidylglycerol in photosynthesis

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Since the first identification of phosphatidylglycerol in Scenedesmus by Benson and Maruo in 1958, researchers have studied many biological functions of this phospholipid. Genetic, biochemical, and structural studies of photosynthetic organisms have revealed that phosphatidylglycerol is crucial to the photosynthetic transport of electrons, the development of chloroplasts, and tolerance to chilling. In this review, we summarize our present understanding of the biochemical and physiological functions of phosphatidylglycerol in cyanobacteria and higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACP:

Acyl-carrier protein

CDP-DG:

CDP-diacylglycerol

Cyt:

Cytochrome

DGDG:

Digalactosyldiacylglycerol

ER:

Endoplasmic reticulum

G3P:

Glycerol 3-phosphate

LHC:

Light-harvesting complex

LPA:

Lysophosphatidic acid

MGDG:

Monogalactosyldiacylglycerol

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PGP:

Phosphatidylglycerophosphate

PQ:

Plastoquinone

PSI:

Photosystem I

PSII:

Photosystem II

SQDG:

Sulfoquinovosyldiacylglycerol

X:Y(Z):

Fatty acid containing X carbon atoms with Y double bonds, in the cis-configuration, at position Z counted from the carboxyl terminus

References

  • Andersson B, Aro E-M (2001) Photodamage and D1 protein turnover in photosystem II. In: Aro E-M, Andersson B (eds) Regulation of photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 377–393

    Google Scholar 

  • Andrews J, Mudd JB (1985) Phosphatidylglycerol synthesis in pea chloroplasts. Pathway and localization. Plant Physiol 79:259–265

    PubMed  CAS  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Babiychuk E, Müller F, Eubel H, Braun H-P, Frentzen M, Kushnir S (2003) Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33:899–909

    Article  PubMed  CAS  Google Scholar 

  • Benson AA, Maruo B (1958) Plant phospholipids. Identification of the phosphatidyl glycerols. Biochim Biophys Acta 27:189–195

    Article  PubMed  CAS  Google Scholar 

  • Benson AA, Maruo B (1989) A ‘nova’ in phosphate metabolism, GPG, and discovery of phosphatidylglycerol. Biochim Biophys Acta 1000:447–451

    PubMed  CAS  Google Scholar 

  • Block MA, Dorne A-J, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts: II. Biochemical characterization. J Biol Chem 258:13281–13286

    PubMed  CAS  Google Scholar 

  • Browse J, McCourt P, Somerville CR (1985) A mutant of Arabidopsis lacking a chloroplast-specific lipid. Science 227:763–765

    Article  CAS  PubMed  Google Scholar 

  • Browse J, Somerville C (1991) Glycerolipid synthesis – biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42:467–506

    Article  CAS  Google Scholar 

  • Carman GM, Henry SA (1999) Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 38:361–399

    Article  PubMed  CAS  Google Scholar 

  • Demonkos I, Malec P, Sallai A, Kovács L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T, Gombos Z (2004) Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol 134:1471–1478

    Article  CAS  Google Scholar 

  • Dorne AJ, Joyard J, Douce R (1990) Do thylakoids really contain phosphatidylcholine? Proc Natl Acad Sci USA 87:71–74

    Article  PubMed  CAS  Google Scholar 

  • Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199–232

    Article  PubMed  CAS  Google Scholar 

  • Droppa M, Horváth G, Hideg E, Farkas T (1995) The role of phospholipids in regulating photosynthetic electron transport activities: treatment of thylakoids with phospholipase C. Photosynth Res 46:287–293

    Article  CAS  Google Scholar 

  • Dubertret G, Mirshahi A, Mirshahi M, Gerard-Hirne C, Tremolieres A (1994) Evidence from in vivo manipulations of lipid composition in mutants that the Δ3-trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. Eur J Biochem 226:473–482

    Article  PubMed  CAS  Google Scholar 

  • Dubertret G, Gerard-Hirne C, Trémolières A (2002) Importance of trans3-hexadecenoic acid-containing phosphatidylglycerol in the formation of the trimeric light-harvesting complex in Chlamydomonas. Plant Physiol Biochem 40:829–836

    Article  CAS  Google Scholar 

  • Frentzen M (2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7:270–276

    Article  PubMed  CAS  Google Scholar 

  • Frentzen M, Heinz E, McKeon TA, Stumpf PK (1983) Specificities and selectivities of glycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur J Biochem 129:629–636

    Article  PubMed  CAS  Google Scholar 

  • Frentzen M, Nishida I, Murata N (1987) Properties of the plastidial acyl-(acyl-carrier protein): glycerol-3-phosphate acyltransferase from the chilling-sensitive plant squash (Cucurbita moschata). Plant Cell Physiol 28:1195–1201

    CAS  Google Scholar 

  • Gombos Z, Várkonyi Z, Hagio M, Iwaki M, Kovács L, Masamoto K, Itoh S, Wada H (2002) Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochemistry 41:3796–3802

    Article  PubMed  CAS  Google Scholar 

  • Griebau R, Frentzen M (1994) Biosynthesis of phosphatidylglycerol in isolated mitochondria of etiolated mung bean (Vigna radiata L) seedlings. Plant Physiol 105:1269–1274

    PubMed  CAS  Google Scholar 

  • Hagio M, Gombos Z, Várkonyi Z, Masamoto K, Sato N, Tsuzuki M, Wada H (2000) Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. Plant Physiol 124:795–804

    Article  PubMed  CAS  Google Scholar 

  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43:1456–1464

    Article  PubMed  CAS  Google Scholar 

  • Hobe S, Prytulla S, Kühlbrandt W, Paulsen H (1994) Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J 13:3423–3429

    PubMed  CAS  Google Scholar 

  • Hobe S, Förster R, Klingler J, Paulsen H (1995) N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 34:10224–10228

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki O, Nishida I, Agata K, Eguchi G, Murata N (1988) Cloning and nucleotide sequence of cDNA for the plastid glycerol-3-phosphate acyltransferase from squash. FEBS Lett 238:424–430

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki-Nishizawa O, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T, Toguri T (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat Biotechnol 14:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Jordan BR, Chow W-S, Baker AJ (1983) The role of phospholipids in the molecular organisation of pea chloroplast membranes: effect of phospholipid depletion on photosynthetic activities. Biochim Biophys Acta 725:77–86

    Article  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Joyard J, Maréchal E, Miege C, Block MA, Dorne A-J, Douce R (1998) Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts. In: Siegenthaler P-A, Murata N (eds) Lipids in Photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 21–52

    Google Scholar 

  • Kenrick JR, Bishop DG (1986) Phosphatidylglycerol and sulphoquinovosyldiacylglycerol in leaves and fruits of chilling-sensitive plants. Phytochemistry 25:1293–1295

    Article  CAS  Google Scholar 

  • Kruse O, Schmid GH (1995) The role of phosphatidylglycerol as a functional effector and membrane anchor of the D1-core peptide from photosystem II-particles of the cyanobacterium Oscillatoria chalybea. Z Naturforsch 50c:380–390

    Google Scholar 

  • Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH, Barber J (2000) Phosphatidylglycerol is involved in the dimerization of photosystem II. J Biol Chem 275:6509–6514

    Article  PubMed  CAS  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Seanger W, Zouni A, Biesiadka J (2005) Toward complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Lyons JK (1973) Chilling injury in plants. Annu Rev Plant Physiol 24:445–466

    Article  CAS  Google Scholar 

  • Maanni AE, Dubertret G, Delrieu MJ, Roche O, Trémolières A (1998) Mutants of Chlamydomonas reinhardtii affected in phosphatidylglycerol metabolism and thylakoid biogenesis. Plant Physiol Biochem 36:609–619

    Article  Google Scholar 

  • Malkin R, Niyogi K (2000) Photosynthesis. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, Maryland, pp 568–628

    Google Scholar 

  • Matsumoto K (2001) Dispensable nature of phosphatidylglycerol in Escherichia coli: dual roles of anionic phospholipids. Mol Microbiol 39:1427–1433

    Article  PubMed  CAS  Google Scholar 

  • McCourt P, Browse J, Watson J, Arntzen CJ, Somerville CR (1985) Analysis of photosynthetic antenna function in a mutant of Arabidopsis thaliana (L.) lacking trans-hexadecenoic acid. Plant Physiol 78:853–858

    PubMed  CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    Article  CAS  Google Scholar 

  • Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92:6219–6223

    Article  PubMed  CAS  Google Scholar 

  • Moore TS Jr (1974) Phosphatidylglycerol synthesis in castor bean endosperm. Kinetics, requirements, and intracellular localization. Plant Physiol 54:164–168

    PubMed  CAS  Google Scholar 

  • Moore TS Jr (1982) Phospholipid biosynthesis. Annu Rev Plant Physiol 33:235–259

    Article  CAS  Google Scholar 

  • Mudd JB, Dezacks R (1981) Synthesis of phosphatidylglycerol by chloroplasts from leaves of Spinacia oleracea L. (spinach). Arch Biochem Biophys 209:584–591

    Article  PubMed  CAS  Google Scholar 

  • Murata N (1983) Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 24:81–86

    CAS  Google Scholar 

  • Murata N, Nishida I (1987) Lipids of blue-green algae (cyanobacteria). In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 9. Academic Press, Orlando, USA, pp 315–347

    Google Scholar 

  • Murata N, Tasaka Y (1997) Glycerol-3-phosphate acyltransferase in plants. Biochim Biophys Acta 1348:10–16

    PubMed  CAS  Google Scholar 

  • Murata N, Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308:1–8

    PubMed  CAS  Google Scholar 

  • Murata N, Yamaya J (1984) Temperature-dependent phase behavior of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Physiol 74:1016–1024

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Sato N, Takahashi N, Hamazaki Y (1982) Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 23:1071–1079

    CAS  Google Scholar 

  • Murata N, Wada H, Gombos Z (1992a) Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol 33:933–941

    CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992b) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713

    Article  CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  PubMed  CAS  Google Scholar 

  • Nishida I, Frentzen M, Ishizaki O, Murata N (1987) Purification of isomeric forms of acyl-(acyl-carrier protein): glycerol-3-phosphate acyltransferase from greening squash cotyledons. Plant Cell Physiol 28:1071–1079

    CAS  Google Scholar 

  • Nishida I, Tasaka Y, Shiraishi H, Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol 21:267–277

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    Article  PubMed  CAS  Google Scholar 

  • Nußberger S, Dörr K, Wang DN, Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234:347–356

    Article  PubMed  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi M, Thompson Jr GA (1991) Biosynthesis of the unique trans3-hexadecenoic acid component of chloroplast phosphatidylglycerol: evidence concerning its site and mechanism of formation. Arch Biochem Biophys 288:591–599

    Article  PubMed  CAS  Google Scholar 

  • Okazaki K, Sato N, Tsuji N, Tsuzuki M, Nishida I (2006) The significance of C16 fatty acids at the sn-2 positions of glycerolipids in the photosynthetic growth of Synechocystis sp. PCC6803. Plant Physiol 141:546–556

    Article  PubMed  CAS  Google Scholar 

  • Phillips MC, Hauser H, Paltauf F (1972) The inter- and intra-molecular mixing of hydrocarbon chains in lecithin/water systems. Chem Phys Lipids 8:127–133

    Article  PubMed  CAS  Google Scholar 

  • Raison JK (1973) The influence of temperature-induced phase changes on kinetics of respiratory and other membrane-associated enzymes. J Bioenerg 4:285–309

    Article  PubMed  CAS  Google Scholar 

  • Raison JK, Wright LC (1983) Thermal phase transitions in the polar lipids of plant membranes. Their induction by diunsaturated phospholipids and their possible relation to chilling injury. Biochim Biophys Acta 731:69–78

    Article  CAS  Google Scholar 

  • Roughan G, Slack R (1984) Glycerolipid synthesis in leaves. Trends Biochem Sci 9:383–386

    Article  CAS  Google Scholar 

  • Roughan PG, Thompson GA Jr, Cho SH (1987) Metabolism of exogenous long-chain fatty acids by spinach leaves. Arch Biochem Biophys 259:481–496

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Sulpice R, Kaneseki T, Hou C-X, Kinoshita M, Higashi S, Moon BY, Nonaka H, Murata N (2004) Genetic modification of fatty acid unsaturation of chloroplastic phosphatidylglycerol alters the sensitivity to cold stress. Plant Cell Environ 27:99–105

    Article  CAS  Google Scholar 

  • Sakurai I, Hagio M, Gombos Z, Tyystjärvi T, Paakkarinen V, Aro E-M, Wada H (2003) Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery. Plant Physiol 133:1376–1384

    Article  PubMed  CAS  Google Scholar 

  • Sakurai I, Shen J-R, Leng J, Ohashi S, Kobayashi M, Wada H (2006) Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. J Biochem 140:201–209

    Article  PubMed  CAS  Google Scholar 

  • Sato N (2004) Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution. J Plant Res 117:495–505

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Murata N (1982a) Lipid biosynthesis in the blue-green alga Anabaena variabilis. I. Lipid classes. Biochim Biophys Acta 710:271–278

    CAS  Google Scholar 

  • Sato N, Murata N (1982b) Lipid biosynthesis in the blue-green alga, Anabaena variabilis. II. Fatty acids and lipid molecular species. Biochim Biophys Acta 710:279–289

    CAS  Google Scholar 

  • Sato N, Hagio M, Wada H, Tuzuki M (2000) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci USA 97:10655–10660

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Suda K, Tsuzuki M (2004) Responsibility of phosphatidylglycerol for biogenesis of the PSI complex. Biochim Biophys Acta 1658:235–243

    Article  PubMed  CAS  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    Article  PubMed  CAS  Google Scholar 

  • Shibuya I (1992) Metabolic regulations and biological functions of phospholipids in Escherichia coli. Prog Lipid Res 31:245–299

    Article  PubMed  CAS  Google Scholar 

  • Siegenthaler P-A (1998) Molecular organization of acyl lipids in photosynthetic membranes of higher plants. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 119–144

    Google Scholar 

  • Somerville C, Browse J, Jaworski JG, Ohlrogge JB (2000) Lipids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Maryland, pp 456–527

    Google Scholar 

  • Stroebel D, Choquest Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426:413–418

    Article  PubMed  CAS  Google Scholar 

  • Szalontai B, Kota Z, Nonaka H, Murata N (2003) Structural consequences of genetically engineered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR study. Biochemistry 42:4292–4299

    Article  PubMed  CAS  Google Scholar 

  • Tasaka Y, Nishida I, Higashi S, Beppu T, Murata N (1990) Fatty acid composition of phosphatidylglycerols in relation to chilling sensitivity of woody plants. Plant Cell Physiol 31:545–550

    CAS  Google Scholar 

  • Trémolières A, Siegenthaler P-A (1998) Reconstitution with lipids. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 175–189

    Google Scholar 

  • Wada H, Murata N (1989) Synechocystis PCC6803 mutants defective in desaturation of fatty acids. Plant Cell Physiol 30:971–978

    CAS  Google Scholar 

  • Wada H, Murata N (1998) Membrane lipids in cyanobacteria. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 65–81

    Google Scholar 

  • Weier D, Müller C, Gaspers C, Frentzen M (2005) Characterization of acyltransferases from Synechocystis sp. PCC6803. Biochem Biophys Res Commun 334:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Wolter FP, Schmidt R, Heinz E (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J 11:4685–4692

    PubMed  CAS  Google Scholar 

  • Xu C, Härtel H, Wada H, Hagio M, Yu B, Eakin C, Benning C (2002) The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerophosphate synthase with impaired activity. Plant Physiol 129:594–604

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Xu C, Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99:5732–5737

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research (no. 16570029) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Murata.

Additional information

Submitted to the special issue in honor of Andrew A. Benson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, H., Murata, N. The essential role of phosphatidylglycerol in photosynthesis. Photosynth Res 92, 205–215 (2007). https://doi.org/10.1007/s11120-007-9203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9203-z

Keywords

Navigation