Skip to main content
Log in

A comment on Warburg’s early understanding of biocatalysis

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The early history of biochemistry was characterized by changing moods. The discovery of cell free fermentation (1897) led to the optimistic belief that all life processes were carried out by intracellular enzymes, being definite proteins with special catalytic properties. But, the persistent failure to isolate pure enzymes raised doubts. When Otto Warburg found cell respiration to be a membrane-bound iron catalysis (1914), he renewed the old position that biocatalysis was caused by surface forces and ferments could be heavy metal ions adsorbed on colloidal membrane carriers. This alternative view became popular when Warburg started his research in photosynthesis and explained his peculiar “photolyte” model. Neither the suggestion of surface-active colloidal ferments, nor the idea of “photolyte” stood the test of time and have now been rejected, but their history is of importance to how concepts evolve and die.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baeyer A (1870) Über die Wasserentziehung und ihre Bedeutung für das Pflanzenleben und die Gährung. Berichte der Deutschen Chemischen Gesellschaft 3:63–75

    Article  Google Scholar 

  • Buchner E (1897) Alkoholische Gährung ohne Hefezellen (vorläufige Mittheilung). Berichte der Deutschen Chemischen Gesellschaft 30:117–124

    Article  CAS  Google Scholar 

  • Burk D, Warburg O (1950) 1-Quanten-Mechanismus und Energiekreisprozeß bei der Photosynthese. Naturwissenschaften 37:560

    Article  CAS  Google Scholar 

  • Cornish-Bowden A (ed) (1997) New beer in an old bottle: Eduard Buchner and the growth of biochemical knowledge (Series Collecció Oberta). Universitat de València, Valencia/Spain

    Google Scholar 

  • Edsall JT (1985) Isidor Traube: physical chemist, biochemist, colloid chemist and controversialist. Proc Am Philos Soc 129:371–406

    PubMed  CAS  Google Scholar 

  • Fischer E (1923) Bergmann M (ed) Untersuchungen über Aminosäuren, Polypeptide und Proteine, vol 2. Springer, Berlin, pp 1907–1919

  • Fletcher W, Hopkins FG (1907) Lactic acid in amphibian muscle. J Physiol (Lond) 35:247–302

    CAS  Google Scholar 

  • Freundlich H (1930) J. Traube zum 70. Geburtstag. Kolloid-Zeitschrift 50:194–196

  • Fruton JS (1979) Early theories of protein structure. Ann N Y Acad Sci 325:1–20

    Article  CAS  Google Scholar 

  • Fruton JS (1999) Proteins, enzymes, genes: the interplay of chemistry and biology. Yale University Press, New Haven/Connecticut

    Google Scholar 

  • Govindjee (1999) On the requirement of minimum number of four versus eight quanta of light for the evolution of one molecule of oxygen in photosynthesis: a historical note. Photosynth Res 59:249–254

  • Govindjee R, Rabinowitch E, Govindjee (1968) Maximum quantum yield and action spectra of photosynthesis and fluorescence in Chlorella. Biochim Biophys Acta 162:530–544

  • Graham T (1861) Liquid diffusion applied to analysis. Philos Trans R Soc Lond A 151:183–224

    Article  Google Scholar 

  • Hermann A, gen. red. (1968) Deutsche Nobelpreisträger. Moos, München

  • Höxtermann E (1983) “Es gibt kein ‘Quantenrätsel’ der Photosynthese!” Zum 100. Geburtstag von Otto Warburg. Wissenschaft und Fortschritt 33:331–333

  • Huxley TH (1869) On the physical basis of life. Fortn Rev NS 5(26):129–145

    Google Scholar 

  • Keilin D (1966) The history of cell respiration and cytochrome. Cambridge University Press, Cambridge/UK

    Google Scholar 

  • Kohler RE (1973a) The enzyme theory of life and the origins of biochemistry. Isis 64:181–196

    Article  PubMed  CAS  Google Scholar 

  • Kohler RE (1973b) The background to Otto Warburg’s conception of the Atmungsferment. J Hist Biol 6:171–192

    Article  PubMed  CAS  Google Scholar 

  • Krebs H (1979) Otto Warburg: Zellphysiologe, Biochemiker, Mediziner 1883–1970. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Kühne W (1876) Über das Verhalten verschiedener organisirter und sogen. ungeformter Fermente. Verhandlungen des naturhistorisch-medicinischen Vereins zu Heidelberg. Neue Folge 1(3):190–193

    Google Scholar 

  • Loeb J (1906) The dynamics of living matter. Columbia University Press, New York

    Google Scholar 

  • Moore B, Evans WG (1915) On forms of growth resembling living organisms and their products slowly deposited from metastable solutions of inorganic colloids. Proc R Soc Lond B 89(609):17–27

    Article  CAS  Google Scholar 

  • Nickelsen K (2007) Otto Warburg’s first approach to photosynthesis. Photosynth Res, this issue, doi: 10.1007/s11120-007-9163-3

  • Northrop JH (1930) Crystalline pepsin I: isolation and tests of purity. J Gen Physiol 13:739–766

    Article  CAS  Google Scholar 

  • Northrop JH, Kunitz M (1931) Isolation of protein crystals possessing tryptic activity. Science 73:262–263

    Article  CAS  PubMed  Google Scholar 

  • Pasteur L (1857) Mémoire sur la fermentation alcoolique. Compt Rend Acad Sci Paris 45:1032–1036

    Google Scholar 

  • Pauly PJ (1990) Controlling life: Jacques Loeb & the engineering ideal in biology. University of California Press, Berkeley, Los Angeles, Oxford

    Google Scholar 

  • Staudinger H (1926) Die Chemie der hochmolekularen organischen Stoffe im Sinne der Kekuléschen Strukturlehre. Berichte der Deutschen Chemischen Gesellschaft 59:3019–3043

    Google Scholar 

  • Staudinger H (1961) Arbeitserinnerungen. A. Huthig, Heidelberg

    Google Scholar 

  • Sumner JB (1926) The isolation and crystallization of the enzyme urease. J Biol Chem 69:435–441

    CAS  Google Scholar 

  • Svedberg T (1937) The ultra-centrifuge and the study of high-molecular compounds. Nature 139:1051–1062

    CAS  Google Scholar 

  • Teich M (1981) Ferment or enzyme: what’s in a name? Hist Philos Life Sci 3:193–215

    Google Scholar 

  • Traube I (1913) Theorie der Narkose. Pflügers Archiv für die gesamte Physiologie 153:276–308

    Article  CAS  Google Scholar 

  • Werner P (1996) Otto Warburgs Beitrag zur Atmungstheorie. Das Problem der Sauerstoffaktivierung. Basilisken-Presse, Marburg/Lahn

    Google Scholar 

  • Warburg E (1912) Über den Energieumsatz bei photochemischen Vorgängen in Gasen II. Berichte der Preußischen Akademie der Wissenschaften, Berlin, pp 216–225

    Google Scholar 

  • Warburg O (1908) Beobachtungen über die Oxydationsprozesse im Seeigelei. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie 57:1–16

    Google Scholar 

  • Warburg O (1910) Über die Oxydationen in lebenden Zellen nach Versuchen am Seeigelei. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie 66:305–340

    Google Scholar 

  • Warburg O (1913) Über die Wirkung der Struktur auf chemische Vorgänge in Zellen. G. Fischer, Jena

    Google Scholar 

  • Warburg O (1914) Über die Rolle des Eisens in der Atmung des Seeigeleis nebst Bemerkungen über einige durch Eisen beschleunigte Oxydationen. Hoppe-Seyler’s Zeitschrift für physiologische Chemie 92:231–256

    CAS  Google Scholar 

  • Warburg O (1920) Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen II. Biochemische Zeitschrift 103:188–217

    CAS  Google Scholar 

  • Warburg O (1926) Über den Stoffwechsel der Tumoren. Springer, Berlin

    Google Scholar 

  • Warburg O (1958) Photosynthesis. Science 128:68–73

    Article  PubMed  CAS  Google Scholar 

  • Warburg O, Burk D (1950) The maximum efficiency of photosynthesis. Arch Biochem Biophys 25:410–443

    CAS  Google Scholar 

  • Warburg O, Negelein E (1922) Über den Energieumsatz bei der Kohlensäureassimilation. Zeitschrift für physikalische Chemie 102:235–266

    Google Scholar 

  • Warburg O, Krippahl G, Lehman A (1969) Chlorophyll catalysis and Einstein’s law of photochemical equivalence in photosynthesis. Am J Bot 56:961–971

    Article  CAS  Google Scholar 

  • Willstätter R (1927) Problems and methods in enzyme research. Cornell University Press, Ithaca

    Google Scholar 

  • Willstätter R (1949) Stoll A (ed) Aus meinem Leben. Von Arbeit, Muße und Freunden. Verlag Chemie, Weinheim

Download references

Acknowledgments

I thank Govindjee for inviting me to write this comment, for providing me with the manuscript of Nickelsen (2007), and for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekkehard Höxtermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höxtermann, E. A comment on Warburg’s early understanding of biocatalysis. Photosynth Res 92, 121–127 (2007). https://doi.org/10.1007/s11120-007-9164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9164-2

Keywords

Navigation