Skip to main content
Log in

Otto Warburg’s first approach to photosynthesis

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In the field of photosynthesis research, Otto Warburg (1883–1970) is predominantly known for the role he played in the controversy that began in the late 1930s regarding the maximum quantum yield of photosynthesis, even though by that time he had already been working on the topic for more than a decade. One of Warburg’s first contributions on the subject, which dates from around 1920, is his proposal for a detailed model of photosynthesis, which he never completely abandoned, despite later overwhelming evidence in favor of alternatives. This paper presents a textual and graphical reconstruction of Warburg’s model and of his argument for its validity. Neither has received much attention in the history of science, even though the model was certainly one of the most plausible explanations of the period and therefore could not be so easily discredited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The Nobel Prize in Physiology or Medicine was awarded to Warburg in 1931 “for his discovery of the nature and mode of action of the respiratory enzyme”; see the information on the official website, http://nobelprize.org. For biographical information on Warburg, see, e.g., Krebs (1972, 1979), Bücher (1983), Höxtermann and Sucker (1989), Werner (1991), Henning (2000), and Höxtermann (2001). On the quantum controversy in particular, see also Govindjee (1999).

  2. Warburg, e.g., devoted almost twenty pages of his 1919 article to describing his new techniques in detail: the growing of the algae, his light source, his manometric methods, the apparatus, and specific vessels, and, finally, the use of rotating sectors to expose the algae to alternating light and dark conditions. Although this section is interesting in its own right, it is not immediately relevant to this paper, so I have chosen to skip over most of it.

  3. Assuming the participation of carbonic acid in the process rather than carbon dioxide was common practice at the time.

  4. For a detailed introduction to the representation of causal processes in graph form, see: Baumgartner and Grasshoff (2004; Chapter III).

  5. On von Baeyer, see also Florkin (1977), pp. 147–151. Contemporary surveys of the field are provided by Schroeder (1917) and Stiles (1925); for a comparison of Liebig and von Baeyer, see also Rabinowitch (1945), pp. 146–148.

References

  • Baumgartner M, Grasshoff G (2004) Kausalität und Kausales Schliessen. Bern Studies in the History and Philosophy of Science, Bern

    Google Scholar 

  • Blackman FF (1905) Optima and limiting factors. Ann Bot 19:281–295

    Google Scholar 

  • Blackman FF, Matthaei GLC (1905) Experimental researches in vegetable assimilation and respiration. IV. – A quantitative study of carbon-dioxide assimilation and leaf-temperature in natural illumination. Proc R Soc Lond Series B 76(511):402–460

    Article  CAS  Google Scholar 

  • Brown HT, Escombe F (1905) Researches on some of the physiological processes of green leaves, with special reference to the interchange of energy between the leaf and its surroundings. Proc R Soc Lond Series B 76(507):29–111

    Article  CAS  Google Scholar 

  • Bücher T (1983) Otto Warburg. A personal recollection. In: Sund H, Ullrich V (eds) Biological oxidations. Springer, Berlin, pp 1–29

    Google Scholar 

  • Craig P (2005) Centennial history of the Carnegie Institution of Washington, vol IV: The Department of Plant Biology. CambridgeUniversity Press, Cambridge

    Google Scholar 

  • Florkin M (1977) A history of biochemistry. Part IV: early studies on biosynthesis. Comprehensive biochemistry, vol 32. Elsevier, Amsterdam

    Google Scholar 

  • Govindjee (1999) On the requirement of minimum number four versus eight quanta of light for the evolution of one molecule of oxygen in photosynthesis: a historical note. Photosynth Res 59:249–254

    Article  CAS  Google Scholar 

  • Govindjee, Krogmann D (2004) Discoveries in oxygenic photosynthesis (1727–2003): a perspective. Photosynth Res 80:15–27

    Article  PubMed  CAS  Google Scholar 

  • Henning E (2000) Otto Heinrich Warburg – Der „Kaiser von Dahlem”. Beitr Wiss Dahlems 13:91–110

    Google Scholar 

  • Höxtermann E (2001) Otto Heinrich Warburg (1882–1970). In: Jahn I, Schmitt M (eds) Darwin & Co. Eine Geschichte der Biologie in Portraits, vol 2. Beck, München, pp 251–274

    Google Scholar 

  • Höxtermann E (2007) A comment on Warburg’s early understanding of biocatalysis. Photosynth Res doi: 10.1007/s11120-007-9164-2

  • Höxtermann E, Sucker U (1989) Otto Warburg. Teubner, Leipzig

    Google Scholar 

  • Kohler RE (1973) The background of Otto Warburg’s conception of the ‘Atmungsferment’. J Hist Biol 6:171–192

    Article  PubMed  CAS  Google Scholar 

  • Krebs H (1972) Otto Heinrich Warburg 1883–1970. Biogr Mem Fellows R Soc 18:629–699

    PubMed  CAS  Google Scholar 

  • Krebs H (1979) Otto Warburg: Zellphysiologe, Biochemiker, Mediziner 1883–1970. Wiss Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Liebig J (1843) Die Wechselwirthschaft. Ann Chem Pharm 46:58–97

    Article  Google Scholar 

  • Matthaei GLC (1905) Experimental researches in vegetable assimilation and respiration. III. – On the effect of temperature on carbon-dioxide assimilation. Phil Trans Series B 197:47–105

    Article  Google Scholar 

  • Rabinowitch EI (1945) Photosynthesis and related processes, vol 1. Interscience, New York

    Google Scholar 

  • Schroeder H (1917) Die Hypothesen über die chemischen Vorgänge bei der Kohlensäure-Assimilation und ihre Grundlagen. Fischer, Jena

    Google Scholar 

  • Stiles W (1925) Photosynthesis: the assimilation of carbon by green plants. Longmans/Green, London

    Google Scholar 

  • von Baeyer A (1870) Über die Wasserentziehung und ihre Bedeutung für das Pflanzenleben und die Gährung. Ber Deuts Chem Ges Berlin 3:63–75

    Article  Google Scholar 

  • Warburg O (1914) Über die Rolle des Eisens in der Atmung des Seeigeleis nebst Bemerkungen über einige durch Eisen beschleunigte Reaktionen. Hoppe-Seyler’s Zeit Physiol Chem 92:231–256

    CAS  Google Scholar 

  • Warburg E (1917) Über die Anwendung der Quantenhypothese auf die Photochemie. Die Naturwiss 5(30):489–494

    Article  Google Scholar 

  • Warburg O (1919) Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. Biochem Zeit 100:230–270

    CAS  Google Scholar 

  • Warburg O (1920) Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen II. Biochem Zeit 103:188–217

    CAS  Google Scholar 

  • Warburg O (1921) Theorie der Kohlensäureassimilation. Die Naturwiss 9:354–358

    Article  CAS  Google Scholar 

  • Warburg O, Negelein E (1922) Über den Energieumsatz bei der Kohlensäureassimilation. Zeit Physik Chem 102:235–266

    Google Scholar 

  • Warburg O, Negelein E (1923) Über den Einfluss der Wellenlänge auf den Energieumsatz bei der Kohlensäureassimilation. Zeit Physik Chem 106:191–218

    CAS  Google Scholar 

  • Warburg O, Krippahl G, Lehman A (1969) Chlorophyll catalysis and Einstein’s law of photochemical equivalence in photosynthesis. Am J Bot 56:961–971

    Article  CAS  Google Scholar 

  • Werner P (1991) Ein Genie irrt seltener. Otto Heinrich Warburg, ein Lebensbild in Dokumenten. Akademie Verlag, Berlin

    Google Scholar 

  • Werner P, Holmes FL (2002) Justus Liebig and the plant physiologists. J Hist Biol 35:421–441

    Article  Google Scholar 

  • Willstätter R, Stoll A (1918) Untersuchungen über die Assimilation der Kohlensäure. Sieben Abhandlungen. Springer, Berlin

    Google Scholar 

  • Zallen D (1993) The “light” organism for the job: green algae and photosynthesis research. J Hist Biol 26:269–279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Govindjee (Urbana, Illinois) for inviting me to write this paper and for suggestions during the various stages of this paper. I also thank the three referees for their helpful comments on earlier drafts of this paper; Johannes Sander (Bern), who prepared the graphs; Margareta Simons (Bern), who greatly improved the English of this paper; and Gerd Grasshoff (Bern) for his generous support of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kärin Nickelsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nickelsen, K. Otto Warburg’s first approach to photosynthesis. Photosynth Res 92, 109–120 (2007). https://doi.org/10.1007/s11120-007-9163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9163-3

Keywords

Navigation