Skip to main content
Log in

Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibition of photosystem II

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Under strong illumination of a photosystem II (PSII) membrane, endogenous superoxide anion, hydrogen peroxide, and hydroxyl radical were successively produced. These compounds then cooperatively resulted in a release of manganese from the oxygen-evolving complex (OEC) and an inhibition of oxygen evolution activity. The OEC inactivation was initiated by an acceptor-side generated superoxide anion, and hydrogen peroxide was most probably responsible for the transportation of reactive oxygen species (ROS) across the PSII membrane from the acceptor-side to the donor-side. Besides ROS being generated in the acceptor-side induced manganese loss; there may also be a ROS-independent manganese loss in the OEC of PSII. Both superoxide anion and hydroxyl radical located inside the PSII membrane were directly identified by a spin trapping-electron spin resonance (ESR) method in combination with a lipophilic spin trap, 5-(diethoxyphosphoryl)-5-phenethyl-1-pyrroline N-oxide (DEPPEPO). The endogenous hydrogen peroxide production was examined by oxidation of thiobenzamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

Abbreviations

CAT:

Catalase

Chl:

Chlorophyll

Cyt b559 :

Cytochrome b559

DCBQ:

2,5-dichloro-1,4-benzoquinone

DEPMPO:

5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide

DEPPEPO:

5-(diethoxyphosphoryl)-5-phenethyl-1-pyrroline N-oxide

DMSO:

Dimethyl sulfoxide

ESR:

Electron spin resonance

HX:

Hypoxanthine

Mes:

2-(N-morpholino) ethanesulfonic acid

1O2 :

Singlet oxygen

OEC:

Oxygen-evolving complex

P680 :

Photosystem II primary electron donor chlorophyll

PSI:

Photosystem I

PSII:

Photosystem II

PSII RC:

Photosystem II reaction center

QA and QB :

Primary and secondary quinone electron acceptor of photosystem II, respectively

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TCNE:

Tetracyanoethylene

XOD:

Xanthine oxidase

References

  • Adir N, Zer H, Shochat S, Ohad I (2003) Photoinhibition – a historical perspective. Photosyn Res 76:343–370

    Article  PubMed  CAS  Google Scholar 

  • Ananyev GM, Wydrzynski T, Renger G, Klimov VV (1992) Transient peroxide formation by the Mn-containing, redox-active donor side of photosystem II upon inhibition of O2 evolution with lauroylcholine chloride. Biochim Biophys Acta 1100:303–311

    Google Scholar 

  • Ananyev GM, Renger G, Wacker U, Klimov VV (1994) The production of superoxide radicals and the superoxide dismutase activity of photosystem II. The possible involvement of cytochrome b559. Photosynth Res 41:327–338

    Article  CAS  Google Scholar 

  • Arató A, Bondarava N, Krieger-Liszkay A (2004) Production of reactive oxygen species in chloride- and calcium-depleted photosystem II and their involvement in photoinhibition. Biochim Biophys Acta 1608:171–180

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    PubMed  CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem I. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Kiso K, Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplast. J Biol Chem 249:2175–2181

    PubMed  CAS  Google Scholar 

  • Barényi B, Krause GH (1985) Inhibition of photosynthetic reactions by light. Planta 163:218–226

    Article  Google Scholar 

  • Berthold DA, Babcock GT, Yocum CF (1981) A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. EPR and electron-transport properties. FEBS Lett 134:231–234

    Article  CAS  Google Scholar 

  • Callahan FE, Becker DW, Cheniae GM (1986) Studies on the photo-inactivation of the water-oxidizing enzyme. II. Characterization of weak light photoinhibition of PSII and its light-induced recovery. Plant Physiol 82:261–269

    PubMed  CAS  Google Scholar 

  • Chen GX, Kazimir J, Cheniae GM (1992) Photoinhibition of hydroxylamine-extracted photosystem II membranes: studies of the mechanism. Biochemistry 31:11072–11083

    Article  PubMed  CAS  Google Scholar 

  • Chow WS (1994) Photoprotection and photoinhibitory damage. Adv Mol Cell Biol 10:151–196

    Article  CAS  Google Scholar 

  • Davies KJA (1987) Protein damage and degradation by oxygen radicals I. General aspects. J Biol Chem 262:9895–9901

    PubMed  CAS  Google Scholar 

  • De Gara L, De Pinto MC, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiol Biochem 41:863–870

    Article  CAS  Google Scholar 

  • Debus RJ (1992) The manganese and calium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102:269–352

    Article  PubMed  CAS  Google Scholar 

  • Eckert HJ, Geiken B, Bernarding J, Napiwotzki A, Eichler HJ, Renger G (1991) Two sites of photoinhibition of the electron transfer in oxygen evolving and Tris-treated PSII membrane fragments from spinach. Photosynth Res 27:97–108

    Article  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, lwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Mullineaux PX (1994) Causes of photooxidative stress in plants and amelioration of defense systems. Boca Raton, CRC Press, USA

    Google Scholar 

  • Fréjaville C, Karoui H, Tuccio B, Le Moigne F, Culcasi M, Pietri S, Lauricella R, Tordo P (1995) 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide – a new efficient phosphorylated nitrone for the in vitro spin-trapping of oxygen-centered radicals. J Med Chem 38:258–265

    Article  PubMed  Google Scholar 

  • Furbank RT, Badger MR (1983) Oxygen exchange associated with electron transport and photophosphorylation in spinach thylakoids. Biochim Biophys Acta 723:400–409

    Article  CAS  Google Scholar 

  • Hakala M, Tuominen I, Keränen M, Tyystjärvi T, Tyystjärvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochim Biophys Acta 1706:68–80

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Clarendon Press, Oxford, USA

    Google Scholar 

  • Han BP (2002) A mechanistic model of algal photoinhibition induced by photodamage to photosystem-II. J Theo Biol 214:519–527

    Article  CAS  Google Scholar 

  • Hayakawa T, Kanematsu S, Asada K (1985) Purification and characterization of thylakoid-bound manganese superoxide dismutase in spinach chloroplasts. Planta 166:111–116

    Article  CAS  Google Scholar 

  • Hideg É, Spetea C, Vass I (1995) Superoxide radicals are not the main promoters of acceptor-side-induced photoinhibitory damage in spinach thylakoids. Photosyn Res 46:399–407

    Article  CAS  Google Scholar 

  • Horvath GV, Oberschall A, Deak M, Sass L, Vass I, Barna B, Kiraly Z, Hideg E, Feher A, Dudits D (2000) Crop improvement by transgenic technology. Life Sci 319:85–90

    CAS  Google Scholar 

  • Jung H, Kim HS (1990) The chromatophores as endogenous sensitizers involved in the photogeneration of singlet oxygen in spinach thylakoids. Photochem Photobiol 52:1003–1009

    CAS  Google Scholar 

  • Keren N, Berg A, van Kan PJM, Levanon H, Ohad I (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci USA 94:1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D, Ducruet JM, Etienne AL (1990) Primary events occurring in photoinhibition in Synechocystis 6714 wild-type and an atrazine-resistant mutant. Biochim Biophys Acta 1020:87–93

    Article  CAS  Google Scholar 

  • Klimov V, Ananyev G, Zastryzhnaya O, Wydrzynski T, Renger G (1993) Photoproduction of hydrogen peroxide in photosystem II membrane fragments: a comparison of four signals Photosynth Res 38:409–416

    Google Scholar 

  • Krieger A, Rutherford AW, Vass I, Hideg E (1998) Relationship between activity, D1 loss, and Mn binding in photoinhibition of photosystem II. Biochemistry 37:16262–16269

    Article  PubMed  CAS  Google Scholar 

  • Kruk J, Strzalka K (1999) Dark reoxidation of the plastoquinone-pool is mediated by the low-potential form of cytochrome b559 in spinach thylakoids. Photosynth Res 62:273–279

    Article  CAS  Google Scholar 

  • Kyle DJ (1987) The biochemical basis for photoinhibition of photosystem II. In: Kyle DJ, Osmond CB, Arntzen CHJ (eds) Topics in photosynthesis, photoinhibition, vol 9. Elsevier Science Publishers B.V., Amsterdam, pp 196–225

  • Liu K, Sun J, Liu Y, Zhang QY, Kuang TY (2001) ESR study on superoxide radicals generated in photosystem II of higher plant. Prog Biochem Biophys 28:372–376

    CAS  Google Scholar 

  • Liu K, Sun J, Song YG, Liu B, Xu YK, Zhang SX, Tian Q, Liu Y (2004) Superoxide, hydrogen peroxide and hydroxyl radical in D1/D2/cytochrome b-559 photosystem II reaction center complex. Photosynth Res 81:41–47

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:650–677

    Article  Google Scholar 

  • Mishra NP, Ghanotakis DF (1994) Exposure of a photosystem II complex to chemically generated singlet oxygen results in D1 fragments similar to the ones observed during aerobic photoinhibition. Biochim Biophys Acta 1187:296–300

    Article  CAS  Google Scholar 

  • Mishra NP, Mishra RK, Singhal GS (1993) Involvement of active oxygen species in photoinhibition of photosystem II: protection of photosynthetic efficiency and inhibition of lipid peroxidation by superoxide dismutase and catalase. J Photochem Photobiol B Biol 19:19–24

    Article  CAS  Google Scholar 

  • Mizusawa N, Miyao M, Yamashita T (1997) Restoration of the high-potential form of cytochrome b-559 by electron transport reactions through photosystem II in Tris-treated photosystem II membranes. Biochim Biophys Acta 1318:145–158

    Article  CAS  Google Scholar 

  • Navari-lzzo F, Pinzino C, Quartacci MF, Sgherri CLM (1999) Superoxide and hydroxyl radical generation, and superoxide dismutase in PS II membrane fragments from wheat. Free Radical Res 30:3–9

    Article  Google Scholar 

  • Nugent JHA (2001) Photoreducible high spin iron eletron paramagnetic resonance signals in dark-adapted Photosystem II: are they oxidised nonhaem iron formed from interaction of oxygen with PS II electron acceotors? Biochem Biophys Acta 1504:228–298

    Google Scholar 

  • Pospíšil P, Arato A, Krieger-Liszkay A, Rutherford AW (2004) Hydroxyl radical generation by photosystem II. Biochemistry 43:6783–6792

    Article  PubMed  CAS  Google Scholar 

  • Santabarbara S, Neverov KV, Garlaschi FM, Zucchelli G, Jennings RC (2001) Involvement of uncoupled antenna chlorophylls in photo-inhibition in thylakoids. FEBS Lett 491:109–113

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Akaike T, Kohno M, Ando M, Maeda H (1992) Hydroxyl radical production by H2O2 plus Cu, Zn-superoxide dismutase reflects the activity of free copper released from the oxidative damaged enzyme. J Boil Chem 267:25371–25377

    CAS  Google Scholar 

  • Schröder AT, Martin G, Low PS (1996) A comparison of methods for the determination of the oxidative burst in whole plants. In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant–microbe interactions, vol 1. International Society for Molecular Plant–Microbe Interactions, St. Paul, Minn, pp 15–20

  • Setlik I, Allakhverdiev SI, Nedbal L, Setlikova E, Klimov VV (1990) Three types of photosystem II photoinactivation. 1. Damaging processes on the acceptor side. Photosynth Res 23:39–48

    Article  CAS  Google Scholar 

  • Sheptovitsky YG, Brudvig GW (1996) Isolation and characterization of spinach photosystem II membrane-associated catalase and polyphenol oxidase. Biochemistry 35:16255–16263

    Article  PubMed  CAS  Google Scholar 

  • Sheptovitsky YG, Brudvig GW (1998) Catalase-free photosystem II: the O2-evolving complex does not dismutate hydrogen peroxide. Biochemistry 37:5052–5059

    Article  PubMed  CAS  Google Scholar 

  • Shi HL, Timmins G, Monske M, Burkick A, Kalyararaman B, Liu Y, Clement JL, Burchiel S, Liu KJ (2005) Evaluation of spin trapping agents and trapping conditions for detection of cell-generated reactive oxygen species. Arch Biochem Biophys 437:59–68

    Article  PubMed  CAS  Google Scholar 

  • Slesak I, Karpinska B, Surowka E, Miszalski Z, Karpinski S (2003) Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C3-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L. Plant Cell Physiol 44:573–581

    Article  PubMed  CAS  Google Scholar 

  • Sutherland MW (1991) The generation of oxygen radicals during host plant responses to infection. Physiol Mol Plant Pathol 39:79–93

    Article  CAS  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro EM, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA 89:1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Virgin I, Styring S, Andersson B (1988) Photosystem II disorganization and manganese release after photoinhibition of isolated spinach thylakoid membranes. FEBS Lett 233:408–412

    Article  CAS  Google Scholar 

  • Wydrzynski T, Angström J, Vänngard T (1989) Hydrogen peroxide formation by photosystem II. Biochim Biophys Acta 973:23–28

    Article  CAS  Google Scholar 

  • Xu Y, Chen ZW, Sun J, Liu K, Chen W, Shi W, Wang HM, Liu Y (2002) Synthesis, crystal structure, and ESR study of a novel phosphorylated lipophilic spin trap. J Org Chem 67:7624–7630

    Article  PubMed  CAS  Google Scholar 

  • Yim MB, Chock PB, Stadtman ER (1990) Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Proc Natl Acad Sci USA 87:5006–5010

    Article  PubMed  CAS  Google Scholar 

  • Yruela I, Montoya G, Alonso PA, Picorel R (1991) Identification of the pheophytin-QA-iron domain of the reducing side of the photosystem II as the copper (II)-inhibitory binding site. J Biol Chem 266:22847–22850

    PubMed  CAS  Google Scholar 

  • Yruela I, Pueyo JJ, Alonso PJ, Picorel R (1996) Photoinhibition of photosystem II from higher plants. Effect of copper inhibition. J Biol Chem 271:27408–27415

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Weng J, Pan JX, Tu TC, Yao S, Xu CH (2003) Study on the photogeneration of superoxide radicals in photosystem II with EPR spin trapping technique. Photosynth Res 75:41–48

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (No. 20473098) and the Pilot Project of Knowledge Innovation Program of CAS. We are very grateful to Frances Thompson, SynZyme Technologies in Irvine, CA, for the careful reading and the correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y.G., Liu, B., Wang, L.F. et al. Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibition of photosystem II. Photosynth Res 90, 67–78 (2006). https://doi.org/10.1007/s11120-006-9111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-006-9111-7

Keywords

Navigation