Skip to main content

Advertisement

Log in

Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation

  • Brief communication
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

From the algal genus Ostrobium two species are known which express a chlorophyll antenna absorbing between 710 and 725 nm to a different extent. In a comparative study with these two species it is shown that quanta absorbed by this long wavelength antenna can be transferred to PS II leading to significant PS␣II-related electron transfer. It is documented that under monochromatic far red light illumination growth continues with rather high efficiency. The data show that the uphill-energy transfer to PS II reduces the quantum yield under white light significantly. It is discussed that this strategy of energy conversion might play a role in special environments where far red light is the predominant energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

ETR:

relative electron transport rate

F:

fluorescence yield

Fm′:

maximal fluorescence yield of illuminated sample

ΦPS II :

Photosytem II quantum yield

IK :

PAR-value characteristic for light saturation

LHC:

light harvesting complex

PAM:

pulse amplitude modulation

PAR:

photosynthetically active radiation

Pmax :

maximal rate of photosynthesis

PS:

Photosystem

References

  • Ben-Shem A, Frolow F, Nelson N, (2003) Crystal structure of plant Photosystem I Nature 426: 630–635

    Article  CAS  PubMed  Google Scholar 

  • Butler WL, (1961) A rar red absoring form of chlorophyll, in vivo Biochim Biophys Acta 93: 413–422

    CAS  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR, (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evulution J Mol Evol 58: 59–68

    Article  Google Scholar 

  • Emerson R, (1958) Yield of photosynthesis from simultaneous illumination with pairs of wavelengths Science 127: 1059–1060

    Article  Google Scholar 

  • Engelmann TW, (1884) Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichts und Assimilation in Pflanzenzellen Bot Zeit 42: 81–93

    Google Scholar 

  • Fromme P, Jordan P, Krauss N, (2001) Structure of Photosystem I Biochim Biophys Acta 1507:5–31

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR, (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence Biochim Biophys Acta 990: 87–92

    CAS  Google Scholar 

  • Gilbert M, Wilhelm C, Richter M, (2000) Bio-optical modelling of oxygen evolution using in vivo fluorescence: Comparison of measured and calculated photosynthesis/irradiance (P-I) curves in four representative phytoplankton species J Plant Physiol 157: 307–314

    CAS  Google Scholar 

  • Halldal P, (1968) Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral favia Biol Bull 134: 411–424

    Article  CAS  Google Scholar 

  • Haxo FT, Blinks R, (1950) Photosynthetic action spectra of marine algae J Gen Physiol 33: 389–422

    Article  CAS  PubMed  Google Scholar 

  • Ihalinen JA, Jensen PE, Haldrup A, van Stokkum IHM, van Grondelle R, Scheller HV, Dekker J, (2002) Pigment organisation and energy transfer dynamics in isolated Photosystem I complexes from Arabidopsis thaliana depleted of the PS I-G, PS I-K, PS I-KL or PS I-N subunit Biophys J 83: 2190–2201

    Article  Google Scholar 

  • Jennings RC, Zucchelli G, Croce R, Garlaschi F, (2003) The photochemical trapping rate from red spectral states in PS I-LHC I is determined by thermal activation of energy transfer to bulk chlorophylls Biochim Biophys Acta 1557: 91–98

    Article  CAS  PubMed  Google Scholar 

  • Koehne B, Elli GG, Jennings R, Wilhelm C, Trissl H-W, (1999) Spectroscopic and molecular characterisation of a long wavelengths absorbing antenna of Ostreobium sp Biochim Biophys Acta 1412: 94–107

    Article  CAS  PubMed  Google Scholar 

  • Kolbowski J, Schreiber U, (1995) Computer-controlled phytoplankton analyzer based on a 4-wavelengths PAM chlorophyll fluorometer In: Mathis P, (ed) Photosynthesis: from Light to Biosphere (V) Kluwer Academic Publishers Dordrecht, The Netherlands pp 825–828

    Google Scholar 

  • Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AW, (2005) A niche for cyanobacteria containing chlorophyll d Nature 433: 820

    Article  PubMed  CAS  Google Scholar 

  • Melkozernov A, Blankenship RE, (2005) Structural and functional organisation of the peripheral light-harvesting system in Photosystem I Photosynth Res 85: 33–50

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Hirayama K, Uezono K, Miyashita H, Miyachi S, (2000) Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina Biochim Biophys Acta 1456: 27–34

    Article  CAS  PubMed  Google Scholar 

  • Morosinotto T, Mozzo M, Bassi R, Corce R, (2005) Pigment-Pigment interaction in Lhca4 antenna complex of higher plant Photosystem I J Biol Chem 280: 20612–20619

    Article  CAS  PubMed  Google Scholar 

  • Murata N, (1977) Photosynthetic Organelles In: Miyachi S, Katoh S, Fujita Y, Shibata K, (eds) Special Issue of Plant Cell Physiol Japanese Society of Plant Physiologists, Center for Academic Publications Japan, Tokyo pp 9–13

    Google Scholar 

  • Rivadossi A, Zucchelli G, Garlaschi FM, Jennings RC, (1999) The importance of PS I chlorophyll red forms in light-harvesting by leaves Photosynth Res 60: 209–215

    Article  CAS  Google Scholar 

  • Schatz GH, Brock H, Holzwarth AR, (1988) Kinetic and energetic model for the primary processes in Photosystem II Biophys J 54: 397–405

    CAS  PubMed  Google Scholar 

  • Schreiber U, (1998) Chlorophyll fluorescence: New instruments for new applications In: Garab G, (ed) Photosynthesis: Mechanisms and Effects (V) Kluwer Academic Publishers Dordrecht, The Netherlands pp 4253–4258

    Google Scholar 

  • Shubin VV, Bezsmertnaya IN, Karapetyan NV, (1995) Efficient energy transfer from the long-wavelength antenna chlorophylls to P700 in Photosystem I from Spirulina platensis Photochem Photobiol 30: 153–160

    Article  CAS  Google Scholar 

  • Stahl U, Tusov VB, Paschkenko VZ, Voigt J, (1989) Far red absorbing chlorophylls in PS I have photoprotective function Biochim Biophys Acta 973: 198–204

    Article  CAS  Google Scholar 

  • Trissl H-W, (1993) Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section Photosynth Res 35: 247–263

    Article  CAS  Google Scholar 

  • Trissl H-W, Wilhelm C, (1993) Why do thylakoid membranes from higher plants form grana stacks? TIBS 18: 415–419

    CAS  PubMed  Google Scholar 

  • Trissl H-W, Law CR, Cogdell RJ, (1999) Uphill energy transfer in LH2-containing purple bacteria at room temperature Biochim Biophys Acta 1412: 149–172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contribution of Sandra Kortmann in data collection and technical support. H.-W. Trissl is greatly acknowledged for fruitful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wilhelm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, C., Jakob, T. Uphill energy transfer from long-wavelength absorbing chlorophylls to PS II in Ostreobium sp. is functional in carbon assimilation. Photosynth Res 87, 323–329 (2006). https://doi.org/10.1007/s11120-005-9002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-005-9002-3

Keywords

Navigation