Skip to main content
Log in

Liouville Brownian Motion at Criticality

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper, we construct the Brownian motion of Liouville Quantum Gravity with central charge c=1 (more precisely we restrict to the corresponding free field theory). Liouville quantum gravity with c=1 corresponds to two-dimensional string theory and is the conjectural scaling limit of large planar maps weighted with a O(n=2) loop model or a Q=4-state Potts model embedded in a two dimensional surface in a conformal manner. Following Garban et al. (2013), we start by constructing the critical LBM from one fixed point \(x\mathbb {R}^{2}\) (or \(x\mathbb {S}^{2}\)), which amounts to changing the speed of a standard planar Brownian motion depending on the local behaviour of the critical Liouville measure M (d x)=−X(x)e 2X(x) d x (where X is a Gaussian Free Field, say on \(\mathbb {S}^{2}\)). Extending this construction simultaneously to all points in \(\mathbb {R}^{2}\) requires a fine analysis of the potential properties of the measure M . This allows us to construct a strong Markov process with continuous sample paths living on the support of M , namely a dense set of Hausdorff dimension 0. We finally construct the Liouville semigroup, resolvent, Green function, heat kernel and Dirichlet form of (critical) Liouville quantum gravity with a c=1 central charge. In passing, we extend to quite a general setting the construction of the critical Gaussian multiplicative chaos that was initiated in Duplantier et al. (Ann. Probab. 42(5), 1769–1808, 2014), Duplantier et al. (Commun. Math. Phys. 330, 283–330 2014) and also establish new capacity estimates for the critical Gaussian multiplicative chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allez, R., Rhodes, R., Vargas, V.: Lognormal ⋆-scale invariant random measures. Probab. Theory Relat. Fields 155(3-4), 751–788 (2013). arXiv:1102.1895v1

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambjørn, J., Boulatov, D., Nielsen, J.L., Rolf, J., Watabiki, Y.: The spectral dimension of 2D quantum gravity. JHEP 9802 010 (1998). arXiv:hep-lat/9808027v1

  3. Ambjørn, J., Anagnostopoulos, K.N., Ichihara, T., Jensen, L., Watabiki, Y.: Quantum Geometry and Diffusions, JHEP11, p. 022 (1998)

  4. Barral, J., Jin, X., Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and KPZ duality. Commun. Math. Phys. 323, 451–485 (2013). arXiv:1202.5296v2

    Article  MathSciNet  MATH  Google Scholar 

  5. Barral, J., Kupiainen, A., Nikula, M., Webb, C. arXiv:1303.4548v1

  6. Barral, J., Kupiainen, A., Nikula, M., Saksman, E., Webb, C.: Critical Mandelbrot cascades. Commun. Math. Phys. 325, 685–711 (2014). arXiv:1206.5444v1

    Article  MathSciNet  MATH  Google Scholar 

  7. Berestycki, N., Garban, C., Rhodes, R., Vargas, V.: KPZ formula derived from Liouville heat kernel. arXiv: 1406.7280

  8. Bernardi, O., Bousquet-Mélou, M.: Counting colored planar maps algebraicity results. Journal of Combinatorial Theory Series B 101, 315377 (2011). arXiv:0909.1695

    Article  Google Scholar 

  9. Brézin, E., Kazakov, V.A., Zamolodchikov, Al.B: Scaling violation in a field theory of closed strings in one physical dimension. Nucl. Phys. B338, 673–688 (1990)

    Article  Google Scholar 

  10. Calcagni, G.: Diffusion in quantum geometry. Phys. Rev. D 044021, 86 (2012)

    Google Scholar 

  11. Calcagni, G.: Diffusion in multiscale spacetimes, Phys. Rev. E87, 012123. arXiv:hep-th/1205.5046v2

  12. Curien, N.: A glimpse of the conformal structure of random planar maps, to appear in Commun Math. Phys. arXiv:1308.1807

  13. Daul, J.-M.: q-state Potts model on a random planar lattice. arXiv:hep-th/9502014

  14. David, F.: What is the intrinsic geometry of two-dimensional quantum gravity?. Nucl. Phys. B368, 671–700 (1992)

    Article  Google Scholar 

  15. David, F.: Conformal Field Theories Coupled to 2-D Gravity in the Conformal Gauge. Mod. Phys. Lett. A 3, 1651–1656 (1988)

    Article  Google Scholar 

  16. David, F., Bauer, M.: Another derivation of the geometrical KPZ relations. arXiv:0810.2858

  17. David, F., Eynard, B.: Planar maps, circle patters and 2dx gravity. Annales de l’Institut Henri Poincaré D 1(2), 139–183 (2014). arXiv:1307.3123

    Article  MathSciNet  MATH  Google Scholar 

  18. David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. arXiv:1410.7318

  19. Di Francesco, P., Ginsparg, P., Zinn-Justin, J.: 2D gravity and random matrices. Phys. Rep. 254, 1–133 (1995)

    Article  MathSciNet  Google Scholar 

  20. Distler, J., Kawai, H.: Conformal field theory and 2-D quantum gravity or hho’s afraid of Joseph Liouville? Nucl. Phys. B321, 509–517 (1989)

    Article  MathSciNet  Google Scholar 

  21. Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Critical Gaussian multiplicative chaos: convergence of the derivative martingale. Ann. Probab. 42(5), 1769–1808 (2014). arXiv:1206.1671v2

  22. Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Renormalization of critical Gaussian multiplicative chaos and KPZ formula. Commun. Math. Phys. 330, 283–330 (2014). arXiv:1212.0529v3

    Article  MathSciNet  MATH  Google Scholar 

  23. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Durrett, R.: Probability Theory and Examples, fourth edition. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  25. Eynard, B., Bonnet, G.: The Potts-q random matrix model: loop equations, critical exponents, and rational case. Phys. Lett. B463, 273–279 (1999)

    Article  MathSciNet  Google Scholar 

  26. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, De Gruyter Studies in Mathematics 19, Walter de Gruyter, Berlin and Hawthorne, New York (1994)

  27. Garban, C.: Quantum gravity and the KPZ formula, seminaire Bourbaki,64e annéé, 2011-2012, no 1052

  28. Garban, C., Rhodes, R., Vargas, V.: Liouville Brownian Motion. arXiv:1301.2876v2 (2013)

  29. Garban, C., Rhodes, R., Vargas, V.: On the heat kernel and the Dirichlet form of Liouville Brownian motion. Electron J. Probab. 19(96), 1–25 (2014). arXiv:1302.6050

    Article  MathSciNet  Google Scholar 

  30. Ginsparg, P., Moore, G.: Lectures on 2D gravity and 2D string theory. In: J. Harvey, J. Polchinski (eds.) Proceedings of the, 1992 TASI in recent direction in particle theory. World Scientific, Singapore (1993)

  31. Ginsparg, P., Zinn-Justin, J.: 2D gravity + 1D matter. Phys. Lett. B240, 333–340 (1990)

    Article  MathSciNet  Google Scholar 

  32. Glimm, J., Jaffe, A.: Quantum Physics: a functional integral point of view. Springer-Verlag, Berlin-Heidelberg-New York (1981)

    Book  MATH  Google Scholar 

  33. Gross, D.J., Klebanov, I.R.: One-dimensional string theory on a circle. Nucl. Phys. B344, 475–498 (1990)

    Article  MathSciNet  Google Scholar 

  34. Gubser, S.S., Klebanov, I.R.: A modified c=1 matrix model with new critical behavior. Phys. Lett. B340, 35–42 (1994)

    Article  MathSciNet  Google Scholar 

  35. Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Quebeć 9(2), 105–150 (1985)

    MathSciNet  MATH  Google Scholar 

  36. Kazakov, V., Kostov, I., Kutasov, D.: A Matrix Model for the 2d Black Hole

  37. Klebanov, I.: String theory in two dimensions. arXiv:hep-th/9108019

  38. Klebanov, I.R., Hashimoto, A.: Non-perturbative solution of matrix models modified by trace-squared terms. Nucl. Phys. B434, 264–282 (1995)

    Article  MathSciNet  Google Scholar 

  39. Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Fractal structure of 2D-quantum gravity. Mod. Phys. Lett. A 3(8), 819–826 (1988)

    Article  MathSciNet  Google Scholar 

  40. Kostov, I.K.: Loop amplitudes for nonrational string theories,. Phys. Lett. B266, 317–324 (1991)

    Article  MathSciNet  Google Scholar 

  41. Kostov, I.K.: Strings with discrete target space. Nucl. Phys. B376, 539–598 (1992)

    Article  MathSciNet  Google Scholar 

  42. Kostov, I.K.: Boundary loop models and and 2D quantum gravity in exact methods in low-dimensional statistical physics and quantum computing. In: Jacobsen, J., Ouvry, S., Pasquier, V., Serban, D., Cugliandolo, L.F. (eds.) : Lecture Notes of the Les Houches Summer School, July 2008, vol. 89. Oxford University Press, Clarendon,Oxford (2010)

  43. Kostov, I.K., Staudacher, M.: Multicritical phases of the O(n) model on a random lattice. Nucl. Phys. B384, 459–483 (1992)

    Article  MathSciNet  Google Scholar 

  44. Lacoin, H., Rhodes, R., Vargas, V.: Complex Gaussian multiplicative chaos, to appear in Communications in Mathematical Physics. arXiv:1307.6117

  45. Le Gall, J.F.: Sur la mesure de Hausdorff de la courbe brownienne. Seminaire de probabilitéś (Strasbourg) tome 19, 297–313 (1985)

    MathSciNet  Google Scholar 

  46. Maillard, P., Rhodes, R., Vargas, V., Zeitouni, O.: Liouville heat kernel: regularity and bounds. arXiv:1406.0491

  47. Motoo, M.: Proof of the iterated logarithm through diffusion equation. Ann. Inst. Statist. Math. 10, 21–28 (1959)

    Article  MathSciNet  Google Scholar 

  48. Nakayama, Y.: Liouville Field Theory – A decade after the revolution. Int. J. Mod. Phys. A19, 2771 (2004)

    Article  Google Scholar 

  49. Nienhuis, B.: Coulomb gas formulation of two-dimensional phase transitions, in phase transitions and critical phenomena edited by Domb, C., Lebowitz, J.L. (eds.) . (Academic, London, 1987), vol. 11.

  50. Parisi, G.: On the one dimensional discretized string. Phys. Lett. B238, 209–212 (1990)

    Article  MathSciNet  Google Scholar 

  51. Polchinski, J.: Critical behavior of random surfaces in one dimension. Nucl. Phys. B346, 253–263 (1990)

    Article  MathSciNet  Google Scholar 

  52. Polyakov, A.M.: Phys. Lett. 103B, 207 (1981)

    Article  MathSciNet  Google Scholar 

  53. Revuz, D., Yor, M.: Continuous martingales and Brownian motion. Springer-Verlag, Berlin, Heidelberg, New York (1991)

    Book  MATH  Google Scholar 

  54. Rhodes, R., Sohier, J., Vargas, V.: Levy multiplicative chaos and star scale invariant random measures. Ann. Probab. 42(2), 689–724 (2014). arXiv:1201.5219

    Article  MathSciNet  MATH  Google Scholar 

  55. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315–392 (2014). arXiv:1305.6221

    Article  MathSciNet  Google Scholar 

  56. Rhodes, R., Vargas, V.: KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15, 358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rhodes, R., Vargas, V.: Spectral dimension of Liouville quantum gravity 15, 2281–2298 (2014). arXiv:1305.0154

  58. Robert, R., Vargas, V.: Gaussian multiplicative chaos revisited. Ann. Probab. 38(2), 605–631 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Robert, R., Vargas, V.: Hydrodynamic turbulence and intermittent random fields. Commun. Math. Phys. 284(3), 649–673 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Sheffield, S.: Conformal weldings of random surfaces, SLE and the quantum gravity zipper. arXiv:1012.4797

  61. Sugino, F., Tsuchiya, O.: Critical behavior in c=1 matrix model with branching interactions. Mod. Phys. Lett. A9, 3149–3162 (1994)

    Article  MathSciNet  Google Scholar 

  62. Watabiki, Y.: Analytic study of fractal structure of quantized surface in two-dimensional quantum gravity. Prog. Theor. Phys. no.114, Supplement, 1–17 (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Rhodes.

Additional information

Partially supported by grant ANR-11-JCJC CHAMU

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhodes, R., Vargas, V. Liouville Brownian Motion at Criticality. Potential Anal 43, 149–197 (2015). https://doi.org/10.1007/s11118-015-9467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9467-4

Keywords

Mathematical Subject Classification (2010)

Navigation