Skip to main content
Log in

Comparison of Spaces of Hardy Type for the Ornstein–Uhlenbeck Operator

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Denote by γ the Gauss measure on ℝn and by \({\mathcal{L}}\) the Ornstein–Uhlenbeck operator. In this paper we introduce a Hardy space \({{\mathfrak{h}}^1}{{\rm \gamma}}\) of Goldberg type and show that for each u in ℝ ∖ {0} and r > 0 the operator \((r{\mathcal{I}}+{\mathcal{L}})^{iu}\) is unbounded from \({{\mathfrak{h}}^1}{{\rm \gamma}}\) to L 1γ. This result is in sharp contrast both with the fact that \((r{\mathcal{I}}+{\mathcal{L}})^{iu}\) is bounded from H 1γ to L 1γ, where H 1γ denotes the Hardy type space introduced in Mauceri and Meda (J Funct Anal 252:278–313, 2007), and with the fact that in the Euclidean case \((r{\mathcal{I}}-\Delta)^{iu}\) is bounded from the Goldberg space \({{\mathfrak{h}}^1}{{\mathbb{R}}^n}\) to L 1n. We consider also the case of Riemannian manifolds M with Riemannian measure μ. We prove that, under certain geometric assumptions on M, an operator \({\mathcal{T}}\), bounded on L 2 μ, and with a kernel satisfying certain analytic assumptions, is bounded from H 1 μ to L 1 μ if and only if it is bounded from \({{\mathfrak{h}}^1}{\mu}\) to L 1 μ. Here H 1 μ denotes the Hardy space introduced in Carbonaro et al. (Ann Sc Norm Super Pisa, 2009), and \({{\mathfrak{h}}^1}{\mu}\) is defined in Section 4, and is equivalent to a space recently introduced by M. Taylor (J Geom Anal 19(1):137–190, 2009). The case of translation invariant operators on homogeneous trees is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carbonaro, A., Mauceri, G., Meda, S.: H 1 and BMO on certain measured metric spaces. Ann. Sc. Norm. Super. Pisa. (2009). http://arxiv.org/pdf/0808.0146

  2. Carbonaro, A., Mauceri, G., Meda, S.: H 1 and BMO for certain locally doubling metric measure spaces of finite measure. Colloq. Math. (2009). http://arxiv.org/pdf/0811.0100

  3. Chavel, I.: Riemannian Geometry: A Modern Introduction. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  4. Chavel, I.: Isoperimetric inequalities. Differential geometric and analytic perspectives. In: Cambridge Tract in Mathematics, vol. 145. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  5. Coulhon, T., Grigoryan, A.: Random walks on graphs wilth regular volume growth. Geom. Funct. Anal. 8, 656–701 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dragicevic, O., Volberg, A.: Bellman functions and dimensionless estimates of Littlewood–Paley type. J. Oper. Theory 56, 167–198 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Fabes, E.B., Gutiérrez, C., Scotto, R.: Weak type estimates for the Riesz transforms associated with the Gaussian measure. Rev. Mat. Iberoam. 10, 229–281 (1994)

    MATH  Google Scholar 

  9. Forzani, L., Scotto, R.: The higher order Riesz transforms for Gaussian measure need not be weak type (1,1). Stud. Math. 131, 205–214 (1998)

    MATH  MathSciNet  Google Scholar 

  10. Figà-Talamanca, A., Nebbia, C.: Harmonic analysis and representation theory for groups acting on homogeneous trees. In: London Math. Society Lecture Notes Series, vol. 162. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  11. Garcia-Cuerva, J., Mauceri, G., Sjögren, P., Torrea, J.L.: Higher order Riesz operators for the Ornstein–Uhlenbeck semigroup. Potential Anal. 10, 379–407 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Garcia-Cuerva, J., Mauceri, G., Sjögren, P., Torrea, J.L.: Spectral multipliers for the Ornstein–Uhlenbeck semigroup. J. Anal. Math. 78, 281–305 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. García-Cuerva, J., Mauceri, G., Meda, S., Sjögren, P., Torrea, J.L.: Functional calculus for the Ornstein-Uhlenbeck operator. J. Funct. Anal. 183(2), 413–450 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. García-Cuerva, J., Mauceri, G., Meda, S., Sjögren, P., Torrea, J.L.: Maximal operators for the Ornstein–Uhlenbeck semigroup. J. Lond. Math. Soc. 67, 219–234 (2003)

    Article  MATH  Google Scholar 

  15. Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46, 27–42 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gutiérrez, C.E., Segovia, C., Torrea, J.L.: On higher order Riesz transforms for Gaussian measures. J. Fourier Anal. Appl. 2, 583–596 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gutiérrez, C.E., Urbina, W.: Estimates for the maximal operator of the Ornstein–Uhlenbeck semigroup. Proc. Am. Math. Soc. 113(1), 99–104 (1991)

    Article  MATH  Google Scholar 

  18. Gundy, R.F.: Sur les transformations de Riesz pour le semigroupe d’Ornstein–Uhlenbeck. C. R. Acad. Sci. Paris Sci., Ser. I Math. 303, 967–970 (1986)

    MATH  MathSciNet  Google Scholar 

  19. Gutiérrez, C.: On the Riesz transforms for Gaussian measures. J. Funct. Anal. 120, 107–134 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Meyer, P.A.: Transformations de Riesz pour le lois Gaussiennes. Springer Lecture Notes in Mathematics 1059, 179–193 (1984)

    Article  Google Scholar 

  21. Mauceri, G., Meda, S.: BMO and H 1 for the Ornstein–Uhlenbeck operator. J. Funct. Anal. 252, 278–313 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mauceri, G., Meda, S., Sjögren, P.: Sharp estimates for the Ornstein–Uhlenbeck operator. Ann. Sc. Norm. Sup. Pisa, Classe di Scienze, Serie IV 3, 447–480 (2004)

    MATH  Google Scholar 

  23. Meda, S., Sjögren, P., Vallarino, M.: On the H 1L 1 boundedness of operators. Proc. Am. Math. Soc. 136, 2921–2931 (2008)

    Article  MATH  Google Scholar 

  24. Menárguez, T., Pérez, S., Soria, F.: The Mehler maximal function: a geometric proof of the weak type 1. J. Lond. Math. Soc. 61(2), 846–856 (2000)

    Article  MATH  Google Scholar 

  25. Meyer, P.A.: Note sur le processus d’Ornstein–Uhlenbeck. Springer Lecture Notes in Mathematics 920, 95–132 (1982)

    Article  Google Scholar 

  26. Muckenhoupt, B.: Hermite conjugate expansions. Trans. Am. Math. Soc. 139, 243–260 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pérez, S.: The local part and the strong type for operators related to the Gauss measure. J. Geom. Anal. 11(3), 491–507 (2001)

    MATH  MathSciNet  Google Scholar 

  28. Pisier, G.: Riesz transforms: a simpler analytic proof of P.A. Meyer’s inequality. Springer Lecture Notes in Mathematics 1321, 485–501 (1988)

    Article  MathSciNet  Google Scholar 

  29. Pérez, S., Soria, F.: Operators associated with the Ornstein-Uhlenbeck semigroup. J. Lond. Math. Soc. 61, 857–871 (2000)

    Article  MATH  Google Scholar 

  30. Sjögren, P.: On the maximal function for the Mehler kernel. In: Harmonic Analysis, Cortona, 1982. Springer Lecture Notes in Mathematics, vol. 992, pp. 73–82 (1983)

  31. Stein, E.M.: Topics in harmonic analysis related to the Littlewood–Paley theory. In: Annals of Math. Studies, no. 63. Princeton N.J. (1970)

  32. Stein, E.M.: Harmonic analysis. Real variable methods, orthogonality and oscillatory integrals. In: Princeton Math. Series no. 43. Princeton N.J. (1993)

  33. Taylor, M.E.: Hardy spaces and bmo on manifolds with bounded geometry. J. Geom. Anal. 19(1), 137–190 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Urbina, W.: On singular integrals with respect to the Gaussian measure. Ann. Sc. Norm. Sup. Pisa, Classe di Scienze, Serie IV XVIII(4), 531–567 (1990)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Mauceri.

Additional information

Work partially supported by the Progetto PRIN 2007 “Analisi Armonica”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbonaro, A., Mauceri, G. & Meda, S. Comparison of Spaces of Hardy Type for the Ornstein–Uhlenbeck Operator. Potential Anal 33, 85–105 (2010). https://doi.org/10.1007/s11118-009-9160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-009-9160-6

Keywords

Mathematics Subject Classifications (2000)

Navigation