Skip to main content

Advertisement

Log in

A Generalization of Poincaré and Log-Sobolev Inequalities

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

A generalized Beckner-type inequality interpolating the Poincaré and the log-Sobolev inequalities is studied. This inequality possesses the additivity property and characterizes certain exponential convergence of the corresponding Markov semi-group. A correspondence between this inequality and the so-called F-Sobolev inequality is presented, with the known criteria of the latter applying also to the former. In particular, an important result of Latała and Oleszkiewicz is generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aida, A., Masuda, T. and Shigekawa, I.: ‘Logarithmic Sobolev inequalities and exponential integrability’, J. Funct. Anal. 126 (1994), 83–101.

    Google Scholar 

  2. Aida, S. and Stroock, D.: ‘Moment estimates derived from Poincaré and logarithmic Sobolev inequalities’, Mat. Res. Lett. 1 (1994), 75–86.

    Google Scholar 

  3. Bakry, D.: L‘hypercontractivite et Son Utilisation en Theorie des Semigroupes, Lecture Notes in Math. 1581, Springer-Verlag, 1994, pp. 1–114.

  4. Bakry, D.: ‘On Sobolev and logarithmic Sobolev inequalities for Markov semigroups’, in New Trends in Stochastic Analysis, World Scientific, 1997, pp. 43–57.

  5. Beckner, W.: ‘A generalized Poincaré inequality for Gaussian measures’, Proc. Amer. Math. Soc. 105 (1989), 397–400.

    Google Scholar 

  6. Bobkov, S.G. and Götz, F.: ‘Exponential integrability and transportation cost related to logarithmic Sobolev inequalities’, J. Funct. Anal. 163 (1999), 1–28.

    Google Scholar 

  7. Chafaï, D.: ‘A note on φ-entropies and φ-Sobolev inequalities’, in preparation.

  8. Chavel, I.: Riemannian Geometry–A Modern Introduction, Cambridge Univ. Press, 1993.

  9. Chen, M.F.: ‘Variational formulas of Poincaré-type inequalities in Banach spaces of functions on the line’, Acta Math. Sin. Eng. Ser. 18 (2002), 417–436.

    Google Scholar 

  10. Chen, M.-F. and Wang, F.-Y.: ‘Estimates of logarithmic Sobolev constant: An improvement of Bakry–Emery criterion’, J. Funct. Anal. 144 (1997), 287–300.

    Google Scholar 

  11. Deuschel, J.-D. and Stroock, D.W.: Large Deviations, Academic Press, New York, 1989.

    Google Scholar 

  12. Deuschel, J.-D. and Stroock, D.W.: ‘Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models’, J. Funct. Anal. 92 (1990), 30–48.

    Google Scholar 

  13. Donnely, H. and Li, P.: ‘Lower bounds for the eigenvalues of Riemannian manifolds’, Michigan Math. J. 29 (1982), 149–161.

    Google Scholar 

  14. Gong, F.-Z. and Wang, F.-Y.: ‘Functional inequalities for uniformly integrable semigroups and application to essential spectrums’, Forum Math. 12 (2002), 293–313.

    Google Scholar 

  15. Greene, R.E. and Wu, H.: ‘C 8approximations of convex, subharmonic, and plurisubharmonic functions’, Ann. Sci. École Norm. Sup. (4) 12 (1979), 47–84.

    Google Scholar 

  16. Gross, L.: ‘Logarithmic Sobolev inequalities’, Amer. J. Math. 97 (1976), 1061–1083.

    Google Scholar 

  17. Gross, L.: ‘Logarithmic Sobolev inequalities and contractivity properties of semigroups’, in Lecture Notes in Math. 1563, Springer, 1993, pp. 54–88.

  18. Gross, L. and Rothaus, O.: ‘Herbst inequalities for supercontractive semigroups’, J. Math. Kyoto Univ. 38 (1998), 295–318.

    Google Scholar 

  19. Holley, R. and Stroock, D.W.: ‘Logarithmic Sobolev inequalities and stochastic Ising models’, J. Statist. Phys. 46 (1987), 1159–1194.

    Google Scholar 

  20. Latała, R. and Oleszkiewicz, K.: ‘Between Sobolev and Poincaré’, in Lecture Notes in Math. 1745, 2000, pp. 147–168.

  21. Ledoux, M.: ‘On Talagrand’s deviation inequalities for product measures’, ESAIM: Probab. and Statist. 1 (1996), 63–87.

    Google Scholar 

  22. Ledoux, M.: ‘Concentration of measures and logarithmic Sobolev inequalities’, in Lecture Notes in Math. 1709, 1999, pp. 120–216.

  23. Mao, Y.-H.: ‘On empty essential spectrum for Markov processes in dimension one’, Preprint.

  24. Röckner, M. and Wang, F.-Y.: ‘Weak Poincaré inequalities and L 2-convergence rates of Markov semigroups’, J. Funct. Anal. 185 (2001), 564–603.

    Google Scholar 

  25. Röckner, M. and Wang, F.-Y.: ‘On the spectrum of a class of nonsectorial diffusion operators’, Bull. Lond. Math. Soc. 36 (2004), 95–104.

    Google Scholar 

  26. Stroock, D.W.: An Introduction to the Theory of Large Deviations, Universitext, Springer-Verlag, 1984.

  27. Wang, F.-Y.: ‘Existence of the spectral gap for elliptic operators’, Ark. Mat. 37 (1999), 395–407.

    Google Scholar 

  28. Wang, F.-Y.: ‘Functional inequalities for empty essential spectrum’, J. Funct. Anal. 170 (2000), 219–245.

    Google Scholar 

  29. Wang, F.-Y.: ‘Functional inequalities, semigroup properties and spectrum estimates’, Infin. Dimens. Anal. Quant. Probab. Rel. Topics 3 (2000), 263–295.

    Google Scholar 

  30. Wang, F.-Y.: ‘Sobolev type inequalities for general symmetric forms’, Proc. Amer. Math. Soc. 128 (2000), 3675–3682.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, FY. A Generalization of Poincaré and Log-Sobolev Inequalities. Potential Anal 22, 1–15 (2005). https://doi.org/10.1007/s11118-004-4006-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-004-4006-8

Navigation