Skip to main content
Log in

On the variational behaviour of functions with positive steepest descent rate

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

This paper investigates some aspects of the variational behaviour of nonsmooth functions, with special emphasis on certain stability phenomena. Relationships linking such properties as sharp minimality, superstability, error bound and sufficiency of first-order optimality conditions are discussed. Their study is performed by employing the steepest descent rate, a rather general tool, which is adequate for a metric space analysis. The positivity of the steepest descent rate is then characterized in terms of \(\Phi \)-subdifferentials. If specialized to a Banach space setting, the resulting characterizations subsume known results on the stability of error bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Correspondance d’Hermite et de Stieltjes: Tome I–II, Gauthier–Villars, Paris (1904–1905)

  2. Marino, A.: Punti stazionari e curve di massima pendenza in domini non convessi. Geodetiche con ostacolo. In: Proceedings of the Congress Studio di problemi-limite della analisi funzionale, Bressanone 1981, Pitagora Editrice, Bologna, pp. 129–154 (1982) [in Italian]

  3. Giannessi, F.: Semidifferentiable functions and necessary optimality conditions. J. Optim. Theory Appl. 60(2), 191–241 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Demyanov, V.F.: Conditions for an extremum in metric spaces. J. Global Optim. 17(1–4), 55–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Demyanov, V.F.: An old problem and new tools. Optim. Meth. Soft. 20(1), 53–70 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Demyanov, V.F.: Conditions for an extremum and calculus of variations. Vyshaya Shkola, Moscow (2005) [in Russian]

  7. Demyanov, V.F.: Nonsmooth optimization, in Nonlinear optimization. Lecture Notes in Math. Springer. Berlin 55–163 (2010), (1989)

  8. Zaslavski, A.J.: An exact penalty approach to constrained minimization problems on metric spaces. Optim. Lett. 7(5), 1009–1016 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zaslavski, A.J.: An approximate exact penalty in constrained vector optimization on metric spaces. J. Optim. Theory Appl. 162(2), 649–664 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. De Giorgi, E., Marino, A., Tosques, M.: Problems of evolution in metric spaces and maximal decreasing curves. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68(3), 180–187 (1980) [in Italian]

  11. Polyak, B.T.: Introduction to optimization. Optimization Software, New York (1987)

    Google Scholar 

  12. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ferris, M.C.: Finite termination of the proximal point algorithm. Math. Program. 50, 3(Ser. A), 359–366 (1991)

  14. Burke, J.V., Ferris, M.C.: Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31(5), 1340–1359 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Burke, J.V., Deng, S.: Weak sharp minima revisited, part I: basic theory, well-posedness in optimization and related topics. Control Cybern. 31(3), 439–469 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Kruger, A., Ngai, H.V., Théra, M.: Stability of error bounds for convex constraint systems in Banach spaces. SIAM J. Optim. 20(6), 3280–3296 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Facchinei, F., Pang, J.-S.: Finite-dimensional variational inequalities and complementarity problems. Springer series in operations research, vol. I. Springer, New York (2003)

    Google Scholar 

  18. Fabian, M.J., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set Valued Var. Anal. 18(2), 121–149 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Penot, J.-P.: Calculus without derivatives, GTM, 266. Springer, New York (2013)

    Book  Google Scholar 

  20. Kruger, A.Y.: Error bounds and metric regularity, to appear in Optimization. doi:10.1080/02331934.2014.938074

  21. Pallaschke, D., Rolewicz, S.: Foundations of Mathematical Optimization. Kluwer Academic Publishers, Dordrecht (1997)

  22. Mordukhovich, B.S.: Variational analysis and generalized differentiation. I. Basic theory. Fundamental Principles of Mathematical Sciences, 330. Springer, Berlin (2006)

  23. Rockafellar, R.T., Wets, R.J.-B.: Variational analysis. Fundamental Principles of Mathematical Sciences, 317. Springer, Berlin (1998)

  24. Schirotzek, W.: Nonsmooth analysis. Universitext. Springer, Berlin (2007)

    Book  Google Scholar 

  25. Poliquin, R.A., Rockafellar, R.T.: Tilt stability of a local minimum. SIAM J. Optim. 8(2), 287–299 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pappalardo, M., Uderzo, A.: G-semidifferentiability in Euclidean spaces. J. Optim. Theory Appl. 101(1), 221–229 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Uderzo.

Additional information

This paper is dedicated to the memory of Vladimir Fëdorovich Demyanov (1938–2014), gentle chieftain from NDOlandia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uderzo, A. On the variational behaviour of functions with positive steepest descent rate. Positivity 19, 725–745 (2015). https://doi.org/10.1007/s11117-015-0324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-015-0324-x

Keywords

Mathematics Subject Classification

Navigation