Skip to main content
Log in

On the continuous Cesàro operator in certain function spaces

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Various properties of the (continuous) Cesàro operator \(\mathsf {C}\), acting on Banach and Fréchet spaces of continuous functions and \(L^p\)-spaces, are investigated. For instance, the spectrum and point spectrum of \(\mathsf {C}\) are completely determined and a study of certain dynamics of \(\mathsf {C}\) is undertaken (eg. hyper- and supercyclicity, chaotic behaviour). In addition, the mean (and uniform mean) ergodic nature of \(\mathsf {C}\) acting in the various spaces is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Albanese, A.A.: Primary products of Banach spaces. Arch. Math. 66, 397–405 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albanese, A.A.: On subspaces of the spaces \(L^p_{\rm loc}\) and of their strong duals. Math. Nachr. 197, 5–18 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albanese, A.A., Moscatelli, V.B.: Complemented subspaces of sums and products of copies of \(L^1 [0,1]\). Rev. Mat. Univ. Complut. Madr. 9, 275–287 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Albanese, A.A., Bonet, J., Ricker, W.J.: On mean ergodic operators. In: Curbera, G.P. (eds.) Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications, vol. 201, pp. 1–20. Birkhäuser, Basel (2010)

  6. Albanese, A.A., Bonet, J., Ricker, W.J.: \(C_0\)-semigroups and mean ergodic operators in a class of Fréchet spaces. J. Math. Anal. Appl. 365, 142–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bayart, F., Matheron, E.: Dynamics of linear operators. Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)

  9. Bellenot, S.F., Dubinsky, E.: Fréchet spaces with nuclear Köthe quotients. Trans. Am. Math. Soc. 273, 579–594 (1982)

    MathSciNet  MATH  Google Scholar 

  10. Bonet, J., Frerick, L., Peris, A., Wengenroth, J.: Transitive and hypercyclic operators on locally convex spaces. Bull. Lond. Math. Soc. 37, 254–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyd, D.W.: The spectrum of the Cesàro operator. Acta Sci. Math. (Szeged) 29, 31–34 (1968)

    MathSciNet  MATH  Google Scholar 

  12. Brown, A., Halmos, P.R., Shields, A.L.: Cesàro operators. Acta Sci. Math. (Szeged) 26, 125–137 (1965)

    MathSciNet  MATH  Google Scholar 

  13. Dierolf, S., Zarnadze, D.N.: A note on strictly regular Fréchet spaces. Arch. Math. 42, 549–556 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory (2nd Printing). Wiley-Interscience, New York (1964)

    Google Scholar 

  15. Galaz Fontes, F., Solís, F.J.: Iterating the Cesàro operators. Proc. Am. Math. Soc. 136, 2147–2153 (2008)

    Article  MATH  Google Scholar 

  16. Galaz Fontes, F., Ruiz-Aguilar, R.W.: Grados de ciclicidad de los operadores de Cesàro–Hardy. Misc. Mat. 57, 103–117 (2013)

    MathSciNet  Google Scholar 

  17. González, M., León-Saavedra, F.: Cyclic behaviour of the Cesàro operator on \(L_2(0,+\infty )\). Proc. Am. Math. Soc. 137, 2049–2055 (2009)

    Article  MATH  Google Scholar 

  18. Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear chaos. In: Universitext. Springer, London (2011)

  19. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. In: Reprint of the 1952 Edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988)

  20. Krengel, U.: Ergodic theorems. In: De Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter Co., Berlin (1985)

  21. Leibowitz, G.M.: Spectra of finite range Cesàro operators. Acta Sci. Math. (Szeged) 35, 27–28 (1973)

    MathSciNet  MATH  Google Scholar 

  22. Leibowitz, G.M.: The Cesàro operators and their generalizations: examples in infinite-dimensional linear analysis. Am. Math. Mon. 80, 654–661 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. León-Saavedra, F., Piqueras-Lerena, A., Seoane-Sepúlveda, J.B.: Orbits of Cesàro type operators. Math. Nachr. 282, 764–773 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, M.: On the uniform ergodic theorem. Proc. Am. Math. Soc. 43, 337–340 (1974)

    Article  MATH  Google Scholar 

  25. Meise, R., Vogt, D.: Introduction to functional analysis. In: Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press; Oxford University Press, New York (1997)

  26. Metafune, G., Moscatelli, V.B.: Quojections and prequojections. In: Terzioğlu, T. (ed.) Advances in the Theory of Fréchet spaces. NATO ASI Series, vol. 287, pp. 235–254. Kluwer Academic Publishers, Dordrecht (1989)

  27. Moscatelli, V.B.: Fréchet spaces without norms and without bases. Bull. Lond. Math. Soc. 12, 63–66 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Piszczek, K.: Quasi-reflexive Fréchet spaces and mean ergodicity. J. Math. Anal. Appl. 361, 224–233 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Piszczek, K.: Barrelled spaces and mean ergodicity. Rev R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 104, 5–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The research of the first two authors was partially supported by the projects MTM2010-15200 and GVA Prometeo II/2013/013 (Spain). The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela A. Albanese.

Appendix

Appendix

Here we collect a few relevant results concerning the spectrum and mean ergodic properties of continuous linear operators defined on certain classes of Fréchet spaces.

Lemma 5.1

Let \(X\) be a Fréchet space and \(S\in {\mathcal {L}}(X)\). Suppose that \(X=\mathrm{proj\,}_{j\in {\mathbb {N}}}(X_j, Q_{j,j+1})\), with \(X_j\) a Banach space (having norm \(\Vert \ \Vert _j\)) and linking maps \(Q_{j,j+1}\in {\mathcal {L}}(X_{j+1},X_j)\) which are surjective for all \(j\in {\mathbb {N}}\), and suppose, for each \(j\in {\mathbb {N}}\), that there exists \(S_j\in {\mathcal {L}}(X_j)\) satisfying

$$\begin{aligned} S_jQ_j=Q_jS, \end{aligned}$$
(5.1)

where \(Q_j\in {\mathcal {L}}(X,X_j)\), \(j\in {\mathbb {N}}\), denotes the canonical projection of \(X\) onto \(X_j\) (i.e., \(Q_{j,j+1}\circ Q_{j+1}=Q_j\)). Then

$$\begin{aligned} \sigma (S)\subseteq \cup _{j=1}^\infty \sigma (S_j)\subseteq \sigma (S)\cup \cup _{j=1}^\infty \sigma _{pt}(S_j). \end{aligned}$$
(5.2)

Moreover,

$$\begin{aligned} \sigma _{pt}(S)\subseteq \cup _{j=1}^\infty \sigma _{pt}(S_j). \end{aligned}$$
(5.3)

Proof

It follows from (5.1) that

$$\begin{aligned} (\lambda I_j-S_j)Q_j=Q_j(\lambda I-S) \end{aligned}$$
(5.4)

for all \(j\in {\mathbb {N}}\) and \(\lambda \in {\mathbb {C}}\), where \(I_j\) denotes the identity map on \(X_j\).

Fix any \(\lambda \in \cap _{j=1}^\infty \rho (S_j)\). If \((\lambda I-S)x=0\) for some \(x\in X\), then by (5.4) we have \((\lambda I_j-S_j)Q_jx=Q_j(\lambda I-S)x=0\) for all \(j\in {\mathbb {N}}\). It follows that \(Q_jx=0\) for all \(j\in {\mathbb {N}}\). This implies that \(x=0\) as \(x\in X= \mathrm{proj\,}_{j\in {\mathbb {N}}}(X_j, Q_{j,j+1})\). The proof of the surjectivity of \((\lambda I-S)\) follows as in the last part of the proof (cf. p. 154) of Theorem 4.1 of [6] via (5.4) and the fact that \((\lambda I_j-S_j)\) is bijective for all \(j\in {\mathbb {N}}\). As \(X\) is a Fréchet space, we can conclude that \((\lambda I-S)^{-1}\in {\mathcal {L}}(X)\) and so \(\lambda \in \rho (S)\). This establishes that \(\sigma (S)\subseteq \cup _{j=1}^\infty \sigma (S_j)\).

To verify the second containment in (5.2) we first observe that if \(\mu \in \rho (S)\), then \((\mu I- S)\) is invertible in \({\mathcal {L}}(X)\) and hence, \((\mu I_j- S_j)\in {\mathcal {L}}(X_j)\) is surjective for all \(j\in {\mathbb {N}}\); this follows routinely from (5.4) and the fact that each operator \(Q_j\), for \(j\in {\mathbb {N}}\), is surjective. Suppose that \(\nu \in \rho (S){\setminus } \cap _{j=1}^\infty \rho (S_j)\). Then \(\nu \not \in \rho (S_{j_0})\) for some \(j_0\in {\mathbb {N}}\), i.e., \((\nu I_{j_0}-S_{j_0})\) is not invertible in \({\mathcal {L}}(X_{j_0})\). Since \((\nu I_{j_0}-S_{j_0})\) is surjective, it follows that \(\nu \in \sigma _{pt}(S_{j_0})\).

Now, let \(\lambda \in \cup _{j=1}^\infty \sigma (S_j)\). If \(\lambda \in \sigma (S)\), then there is nothing to prove. If \(\lambda \not \in \sigma (S)\), then \(\lambda \in \rho (S)\). From the previous paragraph \(\lambda \in \sigma _{pt}(S_{j_0})\) for some \(j_0\in {\mathbb {N}}\), i.e., \(\lambda \in \cup _{j=1}^\infty \sigma _{pt}(S_j)\). This establishes the second containment in (5.2). Thereby (5.2) has been proved.

To verify (5.3) let \(\lambda \in (\cup _{j=1}^\infty \sigma _{pt}(S_j))^c\), in which case \((\lambda _jI_j-S_j)\) is injective for each \(j\in {\mathbb {N}}\). Suppose that \(x\in X\) satisfies \((\lambda I- S)x=0\) in which case (5.4) implies that \((\lambda I_j-S_j)Q_jx=0\) for every \(j\in {\mathbb {N}}\). Hence, \(Q_jx=0\) for every \(j\in {\mathbb {N}}\) and so \(x=0\). This shows that \((\lambda I-S)\) is injective and so \(\lambda \not \in \sigma _{pt}(S)\), i.e., \(\lambda \in (\sigma _{pt}(S))^c\). Thereby (5.3) is established. \(\square \)

A Fréchet space \(X\) is always a projective limit of continuous linear operators \(R_{j}:\ X_{j+1}\rightarrow X_j\), for \(j\in {\mathbb {N}}\), with each \(X_j\) a Banach space. If \(X_j\) and \(R_j\) can be chosen such that each \(R_j\) is surjective and \(X\) is isomorphic to the projective limit \(\mathrm{proj\,}_{j\in {\mathbb {N}}}(X_j,R_j)\), then \(X\) is called a quojection [9, Section 5]. Banach spaces and countable products of Banach spaces are quojections. Moscatelli [27] gave the first examples of quojections which are not isomorphic to countable products of Banach spaces. Concrete examples of quojection Fréchet spaces are \(\omega ={\mathbb {C}}^{\mathbb {N}}\), the spaces \(L^p_{loc}(\Omega )\), for \(1\le p\le \infty \), and \(C^{(m)}(\Omega )\) for \(m\in {\mathbb {N}}_0\), with \(\Omega \subseteq {\mathbb {R}}^N\) any open set, all of which are isomorphic to countable products of Banach spaces. We refer the reader to the survey paper [26] for further information. Under the assumptions of Lemma 5.1 the Fréchet space \(X\) there is necessarily a quojection. The same is true in Lemmas 5.2 and 5.4 to follow.

Lemma 5.2

Let \(X\) be a Fréchet space and \(\{S_n\}_{n=1}^\infty \subseteq {\mathcal {L}}(X)\). Suppose that \(X=\mathrm{proj\,}_{j\in {\mathbb {N}}}(X_j, Q_{j,j+1})\), with \(X_j\) a Banach space (having norm \(\Vert \ \Vert _j\)) and linking maps \(Q_{j,j+1}\in {\mathcal {L}}(X_{j+1},X_j)\) which are surjective for all \(j\in {\mathbb {N}}\), and suppose, for each \(j,\ n\in {\mathbb {N}}\), that there exists \(S_n^{(j)}\in {\mathcal {L}}(X_j)\) satisfying

$$\begin{aligned} S_n^{(j)}Q_j=Q_jS_n, \end{aligned}$$
(5.5)

where \(Q_j\in {\mathcal {L}}(X,X_j)\), \(j\in {\mathbb {N}}\), denotes the canonical projection of \(X\) onto \(X_j\) (i.e., \(Q_{j,j+1}\circ Q_{j+1}=Q_j\)). Then the following statements are equivalent.

  1. (i)

    The limit \(\tau _b\)-\(\lim _{n\rightarrow \infty }S_n=:S\) exists in \({\mathcal {L}}_b(X)\).

  2. (ii)

    For each \(j\in {\mathbb {N}}\), the limit \(\tau _b\)-\(\lim _{n\rightarrow \infty }S_n^{(j)}=:S^{(j)}\) exists in \({\mathcal {L}}_b(X_j)\).

In this case, the operators \(S\in {\mathcal {L}}(X)\) and \(S^{(j)}\in {\mathcal {L}}(X_j)\), for \(j\in {\mathbb {N}}\), satisfy

$$\begin{aligned} Sx=(S^{(j)}x_j)_{j}, \quad x=(x_j)_{j}\in X. \end{aligned}$$
(5.6)

Proof

For each \(j\in {\mathbb {N}}\), define \(q_j(x):=\Vert Q_jx\Vert _j\) for \(x\in X\). Then \(\{q_j\}_{j=1}^\infty \subseteq \Gamma _X\) is a fundamental sequence generating the lc-topology of \(X\) (as \(X=\mathrm{proj\,}_{j\in {\mathbb {N}}}(X_j, Q_{j,j+1})\)).

(i) \(\Rightarrow \) (ii). The existence in \({\mathcal {L}}_b(X)\) of the stated limit \(S\in {\mathcal {L}}(X)\) ensures the existence (in the norm of \(X_j\)) of

$$\begin{aligned} \lim _{n\rightarrow \infty }S_n^{(j)}Q_jx=\lim _{n\rightarrow \infty }Q_jS_nx=Q_jSx, \end{aligned}$$
(5.7)

for all \(j\in {\mathbb {N}}\) and \(x\in X\), via the continuity of \(Q_j\) and (5.5). In fact, the weaker requirement that \(S_n\rightarrow S\) in \({\mathcal {L}}_s(X)\) suffices for this.

Fix \(j\in {\mathbb {N}}\). Define \(S^{(j)}\) on \(X_j=Q_j(X)\) by \(S^{(j)}(Q_jx):=Q_jSx\), for \(x\in X\). Then \(S^{(j)}\in {\mathcal {L}}(X_j)\). Indeed, \(S^{(j)}\) is well defined because if \(Q_jx=Q_jx^{\prime }\) for some \(x,\,x^{\prime }\in X\), then \(Q_j(x-x^{\prime })=0\) and so, via (5.5), \(0=S_n^{(j)}Q_j(x-x^{\prime })=Q_j S_n(x-x^{\prime })\) for all \(n\in {\mathbb {N}}\). Passing to the limit for \(n\rightarrow \infty \), it follows that \(0=Q_jS(x-x^{\prime })\), i.e., \(Q_jSx=Q_j Sx^{\prime }\). Clearly, \(S^{(j)}\) is linear as both \(Q_j\) and \(S\) are linear. Finally, since \(S^{(j)}u=\lim _{n\rightarrow \infty }S_n^{(j)}u\), for each \(u\in X_j\) [cf. (5.7)] and \(\{S_n^{(j)}\}_{n=1}^\infty \subseteq {\mathcal {L}}(X_j)\) with \(X_j\) a Banach space, it follows from the Uniform Boundedness Principle that \(S^{(j)}\) is continuous and hence, \(S_n^{(j)}\rightarrow S^{(j)}\) in \({\mathcal {L}}_s(X_j)\) for \(n\rightarrow \infty \). It is routine [via (5.5)] to check that \(S^{(j)}Q_j=Q_jS\).

As noted above, \(X\) is necessarily a quojection and so there exists \(B\in {\mathcal {B}}(X)\) such that \(\mathcal {U}_j\subseteq Q_j(B)\) [13, Proposition 1], where \(\mathcal {U}_j\) is the closed unit ball of \(X_j\). So, by (5.5) we have

$$\begin{aligned} \sup _{u\in \mathcal {U}_j}\left\| \left( S_n^{(j)}-S^{(j)}\right) u\right\| _j&\le \sup _{x\in B}\left\| \left( S_n^{(j)}-S^{(j)}\right) Q_j{x}\right\| _j\\&=\sup _{x\in B}\Vert (Q_j(S_n-S)x\Vert _j=\sup _{x\in B}{q}_j((S_n-S)x) \end{aligned}$$

for all \(n\in {\mathbb {N}}\). Since \(\sup _{x\in B}{q}_j((S_n-S)x)\rightarrow 0\) for \(n\rightarrow \infty \) (by assumption), it follows that \(\sup _{u\in \mathcal {U}_j}\Vert (S_n^{(j)}-S^{(j)})u\Vert _j\rightarrow 0\) for \(n\rightarrow \infty \), i.e., \(\tau _b\)-\(\lim _{n\rightarrow \infty }S_n^{(j)}=S^{(j)}\). Since \(j\in {\mathbb {N}}\) is arbitrary, the proof is complete.

(ii) \(\Rightarrow \) (i). Fix \(x=(x_j)_{j}\in X=\mathrm{proj\,}_{j\in {\mathbb {N}}}(X_j,Q_{j,j+1})\) and set \(Sx:=(S^{(j)}x_j)_{j}\). Then \(Sx\in X\). Indeed, \(Q_jx=x_j\) for all \(j\in {\mathbb {N}}\) and so, via (5.5), we have

$$\begin{aligned} Q_{j,j+1}S_{j+1}x_{j+1}&=\lim _{n\rightarrow \infty }Q_{j,j+1}S_n^{(j+1)}Q_{j+1}x =\lim _{n\rightarrow \infty }Q_{j,j+1}Q_{j+1}S_nx\\&=\lim _{n\rightarrow \infty }Q_{j}S_nx=\lim _{n\rightarrow \infty }S_n^{(j)}Q_jx=S^{(j)}x_j, \end{aligned}$$

for all \(j\in {\mathbb {N}}\), i.e., \(Sx\in X\). Clearly, the linearity of the \(S^{(j)}\)’s imply the linearity of the map \(S:x\mapsto Sx\), for \(x\in X\). Moreover, the continuity of \(S\) is a consequence of \(X=\mathrm{proj\,}_{j\in {\mathbb {N}}}(X_j,Q_{j,j+1})\). Next, fix \(j\in {\mathbb {N}}\) and \(B\in {\mathcal {B}}(X)\). Again via (5.5) we have

$$\begin{aligned} \sup _{x\in B}q_j((S_n-S)x)&=\sup _{x\in B}\Vert (Q_j(S_n-S)x\Vert _j=\sup _{x\in B}\left\| \left( S_n^{(j)}-S^{(j)}\right) Q_jx\right\| _j\\&= \sup _{u\in Q_j(B)}\left\| \left( S_n^{(j)}-S^{(j)}\right) u\right\| _j \end{aligned}$$

for all \(n\in {\mathbb {N}}\). Since \(Q_j(B)\in {\mathcal {B}}(X_j)\), it follows from the assumption (ii) that \(\sup _{u\in Q_j(B)}\Vert (S_n^{(j)}-S^{(j)})u\Vert _j \rightarrow 0\) for \(n\rightarrow \infty \). Accordingly, for each \(j\in {\mathbb {N}}\) and each \(B\in {\mathcal {B}}(X)\) we have \(\lim _{n\rightarrow \infty }\sup _{x\in B}q_j((S_n-S)x)= 0\), i.e., (i) holds. \(\square \)

Remark 5.3

A careful examination of the proof of Lemma 5.2 shows that the equivalence (i) \(\Leftrightarrow \) (ii) remains valid if \(\tau _b\) is replaced with \(\tau _s\).

Lemma 5.4

Let \(X=\mathrm{proj\,}_{j\in {\mathbb {N}}}(X_j, Q_{j.j+1})\) be a Fréchet space and operators \(S\in {\mathcal {L}}(X)\) and \(S_j\in {\mathcal {L}}(X_j)\), for \(j\in {\mathbb {N}}\), be given which satisfy the assumptions of Lemma 5.1 (with \(Q_j\in {\mathcal {L}}(X,X_j)\), \(j\in {\mathbb {N}}\), denoting the canonical projection of \(X\) onto \(X_j\) and \(\Vert \ \Vert _j\) being the norm in the Banach space \(X_j\)).

  1. (i)

    \(S\in {\mathcal {L}}(X)\) is power bounded if and only if each \(S_j\in {\mathcal {L}}(X_j)\), \(j\in {\mathbb {N}}\), is power bounded.

  2. (ii)

    \(S\in {\mathcal {L}}(X)\) is uniformly mean ergodic if and only if each \(S_j\in {\mathcal {L}}(X_j)\), \(j\in {\mathbb {N}}\), is uniformly mean ergodic.

  3. (iii)

    \(S\in {\mathcal {L}}(X)\) is mean ergodic if and only if each \(S_j\in {\mathcal {L}}(X_j)\), \(j\in {\mathbb {N}}\), is mean ergodic.

Proof

Let \(\{q_j\}_{j=1}^\infty \subseteq \Gamma _X\) be the fundamental sequence of seminorms generating the lc-topology of \(X\) as given in the proof of Lemma 5.2.

  1. (i)

    Suppose that each \(S_j\in {\mathcal {L}}(X_j)\), \(j\in {\mathbb {N}}\), is power bounded, i.e., there exists \(M_j>0\) such that

    $$\begin{aligned} \left\| S_j^nu\right\| _j\le M_j\Vert u\Vert _j,\quad u\in X_j,\ n\in {\mathbb {N}}. \end{aligned}$$

    It follows from (5.1) that \(S^n_jQ_j=Q_jS^n\) for all \(j,\ n\in {\mathbb {N}}\). Fix \(j\in {\mathbb {N}}\). Then, for each \(n\in {\mathbb {N}}\) and \(x\in X\) we have

    $$\begin{aligned} q_j(S^nx)=\left\| Q_jS^n x\right\| _j=\left\| S_j^nQ_j x\right\| _j\le M_j\Vert Q_jx\Vert _j=M_jq_j(x). \end{aligned}$$

    Since \(\{q_j\}_{j=1}^\infty \) generate the lc-topology of the Fréchet space \(X\), it follows that \(\{S^n\}_{n=1}^\infty \subseteq {\mathcal {L}}(X)\) is equicontinuous, i.e., \(S\) is power bounded. Conversely, suppose that \(S\) is power bounded. Fix \(j\in {\mathbb {N}}\) and let \(\mathcal {U}_j\) be the closed unit ball of \(X_j\). Since \(X\) is a quojection, there exists \(B\in {\mathcal {B}}(X)\) with   \(\mathcal {U}_{j} \subseteq Q_j(B)\). Moreover, the power boundedness of \(S\) implies that \(C:=\cup _{n\in {\mathbb {N}}}S^n(B)\in {\mathcal {B}}(X)\) and hence, there exists \(M>0\) such that \(q_j(z)\le M\) for every \(z\in C\). Let \(u\in \mathcal {U}_j\). Then \(u=Q_jx\) for some \(x\in B\) and so

    $$\begin{aligned} \left\| S_j^nu\right\| _j=\left\| S_j^nQ_jx\right\| _j=\left\| Q_jS^nx\right\| _j=q_j(S^nx)\le M, \end{aligned}$$

    for every \(n\in {\mathbb {N}}\). This implies that the operator norms satisfy \(\Vert S_j^n\Vert _{op}\le M\), for \(n\in {\mathbb {N}}\). Accordingly, \(S_j\in {\mathcal {L}}(X_j)\) is power bounded.

  2. (ii)

    For each \(n\in {\mathbb {N}}\) define \(\tilde{S}_n:=S_{[n]}\in {\mathcal {L}}(X)\) and \(\tilde{S}_n^{(j)}:=(S_j)_{[n]}\in {\mathcal {L}}(X_j)\), for \(j\in {\mathbb {N}}\). It follows from (5.1) that \(\tilde{S}_n^{(j)}Q_j=Q_j\tilde{S}_n\), for \(j,\ n\in {\mathbb {N}}\). Accordingly, we can apply Lemma 5.2 (with \(\tilde{S}_n\) in place of \(S_n\) and \(\tilde{S}_n^{(j)}\) in place of \(S_n^{(j)}\)) to conclude that \(S\) is uniformly mean ergodic if and only if each \(S_j\), \(j\in {\mathbb {N}}\), is uniformly mean ergodic.

  3. (iii)

    Apply the same argument as in part (ii) but now apply Lemma 5.2 with \(\tau _s\) in place of \(\tau _b\); see Remark 5.3.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albanese, A.A., Bonet, J. & Ricker, W.J. On the continuous Cesàro operator in certain function spaces. Positivity 19, 659–679 (2015). https://doi.org/10.1007/s11117-014-0321-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-014-0321-5

Keywords

Mathematics Subject Classification

Navigation