Skip to main content
Log in

Large-scale road network vulnerability analysis: a sensitivity analysis based approach

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Traditionally, an assessment of transport network vulnerability is a computationally intensive operation. This article proposes a sensitivity analysis-based approach to improve computational efficiency and allow for large-scale applications of road network vulnerability analysis. Various vulnerability measures can be used with the proposed method. For illustrative purposes, this article adopts the relative accessibility index (AI), which follows the Hansen integral index, as the network vulnerability measure for evaluating the socio-economic effects of link (or road segment) capacity degradation or closure. Critical links are ranked according to the differences in the AIs between normal and degraded networks. The proposed method only requires a single computation of the network equilibrium problem. The proposed technique significantly reduces computational burden and memory storage requirements compared with the traditional approach. The road networks of the Sioux Falls city and the Bangkok metropolitan area are used to demonstrate the applicability and efficiency of the proposed method. Network manager(s) or transport planner(s) can use this approach as a decision support tool for identifying critical links in road networks. By improving these critical links or constructing new bypass roads (or parallel paths) to increase capacity redundancy, the overall vulnerability of the networks can be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asakura, Y., Kashiwadani, M.: Road network reliability caused by daily fluctuation of traffic flow. Eur. Transp. Highw. Plan. 19, 73–84 (1991)

    Google Scholar 

  • Bell, M.G.H., Iida, Y.: Transportation Network Analysis. Wiley, Chichester (1997)

    Google Scholar 

  • Berdica, K.: An introduction to road vulnerability: what has been done, is done and should be done. Transp. Policy 9(2), 117–127 (2002)

    Article  Google Scholar 

  • Berdica, K., Mattsson, L.: Vulnerability: a model-based case study of the road network in Stockholm. In: Murray, A.T., Grubesic, T.H. (eds.) Critical infrastructure: reliability and vulnerability, pp. 81–106. Springer, Heidelberg (2007)

    Google Scholar 

  • Chen, A., Yang, H., Lo, H.K., Tang, W.H.: Capacity reliability of a road network: an assessment methodology and numerical results. Transp. Res. B 36(3), 225–252 (2002)

    Article  Google Scholar 

  • Clark, S.D., Watling, D.P.: Sensitivity analysis of the probit-based stochastic user equilibrium assignment model. Transp. Res. B 36(7), 617–635 (2002)

    Article  Google Scholar 

  • Connors, R.D., Sumalee, A., Watling, D.P.: Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user-classes. Transp. Res. B 41(6), 593–615 (2007)

    Article  Google Scholar 

  • D’Este, G.M., Taylor, M.A.P.: Network vulnerability: an approach to reliability analysis at the level of national strategic transport networks. In: Bell, M.G.H., Iida, Y. (eds.) The Network Reliability of Transport, pp. 23–44. Pergamon, Oxford (2003)

    Chapter  Google Scholar 

  • Daganzo, C.F., Sheffi, Y.: On stochastic models of traffic assignment. Transp. Sci. 11(3), 253–274 (1977)

    Article  Google Scholar 

  • DOPA: Department of provincial administration, population statistics (in Thai). http://www.dopa.go.th/stat/y_stat51.html (2009)

  • Hansen, W.G.: How accessibility shapes land use. J. Am. Inst. Plan. 25(2), 73–76 (1959)

    Article  Google Scholar 

  • Jenelius, E.: Network structure and travel patterns: explaining the geographical disparities of road network vulnerability. J. Transp. Geogr. 17(3), 234–244 (2009)

    Article  Google Scholar 

  • MathWorks (2011) Matlab R2011a

  • Pearson, K.: Notes on the history of correlation. Biometrika 13(1), 25–45 (1920)

    Article  Google Scholar 

  • Robinson, S.M.: Strong regularity and the sensitivity analysis of traffic equilibria: a comment. Transp. Sci. 40(4), 540–542 (2006). doi:10.1287/trsc.1060.0162

    Article  Google Scholar 

  • Sheffi, Y.: Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall, Upper Saddle River (1985)

    Google Scholar 

  • Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15(1), 72–101 (1904)

    Article  Google Scholar 

  • Sumalee, A., Luathep, P., Lam, W.H.K., Connors, R.D.: Evaluation and design of transport network capacity under demand uncertainty. Transp. Res. Rec. J. Transp. Res. Board 2090, 17–28 (2009)

    Article  Google Scholar 

  • Suwansirikul, C., Friesz, T.L., Tobin, R.L.: Equilibrium decomposed optimization: a heuristic for the continuous equilibrium network design problems. Transp. Sci. 21(4), 254–263 (1987)

    Article  Google Scholar 

  • Taylor, M.A.P.: Critical transport infrastructure in urban areas: Impacts of traffic incidents assessed using accessibility-based network vulnerability analysis. Growth Change 39(4), 593–616 (2008)

    Article  Google Scholar 

  • Taylor, M.A.P., D’Este, G.M.: Transport network vulnerability: a method for diagnosis of critical locations in transport infrastructure systems. In: Murray, A.T., Grubesic, T.H. (eds.) Critical Infrastructure: Reliability and Vulnerability, pp. 9–30. Springer, Heidelberg (2007)

    Google Scholar 

  • Taylor, M.A.P., Sekhar, S.V.C., D’Este, G.M.: Application of accessibility based methods for vulnerability analysis of strategic road networks. Netw. Spatial Econ. 6(3), 267–291 (2006)

    Article  Google Scholar 

  • Van Vliet, D., Wright, I.: Saturn 10.6 user manual. The Institute for Transport Studies. The University of Leeds and Atkins Planning Consultants Ltd., Leeds (2006)

    Google Scholar 

  • Wakabayashi, H., Iida, Y.: Upper and lower bounds of terminal reliability of road networks: an efficient method with boolean algebra. J. Nat. Disaster Sci. 14(1), 29–44 (1992)

    Google Scholar 

  • Yang, H.: Sensitivity analysis for the elastic-demand network equilibrium problem with applications. Transp. Res. B 31(1), 55–70 (1997)

    Article  Google Scholar 

  • Yang, H., Sasaki, T., Iida, Y., Asakura, Y.: Estimation of origin-destination matrices from link traffic counts on congested networks. Transp. Res. B 26(6), 417–434 (1992)

    Article  Google Scholar 

  • Ying, J.Q., Miyagi, T.: Sensitivity analysis for stochastic user equilibrium network flows-a dual approach. Transp. Sci. 35(2), 124–133 (2001). doi:10.1287/trsc.35.2.124.10137

    Article  Google Scholar 

Download references

Acknowledgments

The first author would like to thank the Hong Kong Polytechnic University for providing the postgraduate research studentship. The research is also supported by a General Research Fund project of the Hong Kong Research Grant Council (PolyU5290/09E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agachai Sumalee.

Appendix A

Appendix A

Since the Jacobian of the probit path choice probability vector with respect to the mean path cost vector (\( \nabla_{{{\mathbf{c}}^{w} }} {\mathbf{P}}^{w} \)) is symmetric, it is only necessary to determine the upper triangular elements of \( \nabla_{{{\mathbf{c}}^{w} }} {\mathbf{P}}^{w} \) by using an approximation method (Clark and Watling, 2002).

For route k connecting the OD movement w, the derivative of the path choice probability (\( P_{k}^{w} \)) with respect to the cost on an alternative route j (\( C_{j}^{w}\)), at a given mean path cost vector \( {\mathbf{c}}^{w} \) with a variance–covariance matrix \( \varvec{\Upsigma}^{w} \), is formulated as

$$ \left. {\frac{{\partial P_{k}^{w} }}{{\partial C_{j}^{w} }}} \right|_{{C = {\mathbf{c}}^{w} }} = \sqrt {\frac{{\left| {\varvec{\Upsigma}^{w} \left( {k,j} \right)} \right|}}{{2\pi \left| {\varvec{\Upsigma}^{w} } \right|}}} \exp \left( {\frac{{A\left( {k,j} \right)}}{2}} \right){\text{MNP}}_{k} \left( {{\mathbf{c}}^{w} \left( {k,j} \right),\varvec{\Upsigma}^{w} \left( {k,j} \right)} \right)\quad k < j;\;k,j \in {\mathbf{K}}^{w}, $$

where \( {\mathbf{K}}^{w} \) is the subset of paths connecting the OD movement w; \( {\text{MNP}}_{k} \left( {{\mathbf{c}}^{w} \left( {k,j} \right),\varvec{\Upsigma}^{w} \left( {k,j} \right)} \right) \) is the multinomial probit (MNP) choice probability for alternative \( k \in {\mathbf{K}}^{w} \) corresponding to a model with N w − 1 alternatives (where the original model had \( N^{w} = \left| {{\mathbf{K}}^{w} } \right| \) alternatives), mean cost vector \( {\mathbf{c}}^{w} \left( {k,j} \right) \) and covariance matrix \( \varvec{\Upsigma}^{w} \left( {k,j} \right) \); and the matrix \( \varvec{\Upsigma}^{w} \left( {k,j} \right) \), row-vector \( {\mathbf{c}}^{w} \left( {k,j} \right) \), and scalar \( A\left( {k,j} \right) \) are computed from the following steps (with \( {\mathbf{c}}^{w} \) assumed to be in row-vector notation):

Step 1: :

Calculate the inverse covariance matrix \( \left( {\varvec{\Upsigma}^{w} } \right)^{ - 1} \) and the row vector \( {\mathbf{c}}^{w} \cdot \left( {\varvec{\Upsigma}^{w} } \right)^{ - 1} \).

Step 2::

Form the (N w − 1)-square matrix \( {\mathbf{D}}\left( {k,j} \right) \) from \( \left( {\varvec{\Upsigma}^{w} } \right)^{ - 1} \) by:

(2.1) adding row j of \( \left( {\varvec{\Upsigma}^{w} } \right)^{ - 1} \) to row k;

(2.2) adding column j of the resultant matrix from (2.1) to its column k;

(2.3) deleting row j and column j of the resultant matrix from (2.2).

Step 3::

Form the (N w − 1) dimensional row vector \( {\mathbf{d}}\left( {k,j} \right) \) from \( {\mathbf{c}}^{w} \cdot \left( {\varvec{\Upsigma}^{w} } \right)^{ - 1} \), by adding the jth element to the kth element, and then deleting the jth element.

Step 4::

Compute:

$$ \begin{aligned}\varvec{\Upsigma}^{w} \left( {k,j} \right) = \left( {{\mathbf{D}}\left( {k,j} \right)} \right)^{ - 1} , \\ {\mathbf{c}}^{w} \left( {k,j} \right) = {\mathbf{d}}\left( {k,j} \right) \cdot\varvec{\Upsigma}^{w} \left( {k,j} \right),\;{\text{and}} \\ A\left( {k,j} \right) = {\mathbf{d}}\left( {k,j} \right) \cdot\varvec{\Upsigma}^{w} \left( {k,j} \right) \cdot \left( {{\mathbf{d}}\left( {k,j} \right)} \right)^{T} - {\mathbf{c}}^{w} \cdot \left( {\varvec{\Upsigma}^{w} } \right)^{ - 1} \cdot\,\left( {{\mathbf{c}}^{w} } \right)^{T} \\ \end{aligned} $$

Since the Jacobian is symmetry and the choice probabilities must sum to 1, once all the off-diagonal elements have been determined the diagonal terms can be calculated from:

$$ \frac{{\partial P_{k}^{w} }}{{\partial C_{k}^{w} }} = - \sum\limits_{{j \in {\mathbf{K}}^{w} ,j \ne k}} {\frac{{\partial P_{k}^{w} }}{{\partial C_{j}^{w} }}} $$

This approximation method is feasible to apply for large scale networks, where \( {\text{MNP}}_{k} \left( {{\mathbf{c}}^{w} \left( {k,j} \right),\varvec{\Upsigma}^{w} \left( {k,j} \right)} \right) \) can be calculated by Monte Carlo methods.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luathep, P., Sumalee, A., Ho, H.W. et al. Large-scale road network vulnerability analysis: a sensitivity analysis based approach. Transportation 38, 799–817 (2011). https://doi.org/10.1007/s11116-011-9350-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-011-9350-0

Keywords

Navigation