Skip to main content
Log in

OCDMA and OSTBC based VLC transceiver design using NI cDAQ

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Visible light communication (VLC) is a novel technology especially for short-range data communication. IEEE has standardized VLC for 5G systems as a means to short-range wireless communication. In this paper, a complete state-of-the-art VLC software-defined radio is designed using NI cDAQ components tools developed in LabVIEW/MATLAB. The main objectives in designing a VLC transceiver are the suitable envelope for driving LEDs (transmitters) and a high data rate. The current work makes use of optical code division multiple access mainly to achieve the said objectives. It is shown through comparison with existing system that the proposed system is computationally less expensive and provides improved data rate. Finally, simulation programs are also developed and the proposed system is compared with the existing system in terms of bit error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tsiatmas, A., Willems, F.M., Baggen, S.: Optimum diversity combining techniques for visible light communication systems. In: Globecom Workshops (GC Wkshps). IEEE, pp. 456–461 (2014)

  2. Ma, X., Lee, K., Lee, K.: Appropriate modulation scheme for visible light communication systems considering illumination. Electron. Lett. 48(18), 1137–1139 (2012)

    Article  Google Scholar 

  3. Wang, Y., Li, R., Wang, Y., Zhang, Z.: 3.25-Gbps visible light communication system based on single carrier frequency domain equalization utilizing an RGB LED. In: Optical Fiber Communication Conference. Optical Society of America (2014)

  4. Komine, T., Nakagawa, M.: Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004)

    Article  Google Scholar 

  5. Han, Q., Lu, H.: Performance improvement of visible light communication system using reed-solomon code. In: Ubiquitous Intelligence and Computing and 12th International Conference on Autonomic and Trusted Computing and 15th International Conference on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom). IEEE, pp. 822–825 (2015)

  6. Brailovsky, A., Mitin, V.: Fast switching of light-emitting diodes. Solid State Electron. 44(4), 713–718 (2000)

    Article  Google Scholar 

  7. Yu, Z., Baxley, R.J., Zhou, G.T.: EVM and achievable data rate analysis of clipped OFDM signals in visible light communication. EURASIP J. Wirel. Commun. Netw. 2012(1), 1–16 (2012)

    Article  Google Scholar 

  8. George, J.J., Mustafa, M.H., Osman, N.M., Ahmed, N.H., Hamed, D.: A survey on visible light communication. Int. J. Eng. Comput. Sci. 3(2), 3805–3808 (2014)

    Google Scholar 

  9. Sugiyama, H., Haruyama, S., Nakagawa, M.: Brightness control methods for illumination and visible-light communication systems. In: 3rd International Conference on Wireless and Mobile Communications, 2007. ICWMC’07. IEEE, pp. 78–78 (2007)

  10. Gancarz, J.E., Elgala, H., Little, T.D.: Overlapping PPM for band-limited visible light communication and dimming. J. Solid State Light. 2(1), 1–9 (2015)

    Article  Google Scholar 

  11. Park, H., Barry, J.R.: Modulation analysis for wireless infrared communications. In: International Conference on Communications, ICC’95 Seattle, ’Gateway to Globalization’, vol. 2. IEEE, pp. 1182–1186 (1995)

  12. Hou, R., Chen, Y., Wu, J., Zhang, H.: A brief survey of optical wireless communication. In: Proceedings of the 13th Australasian Symposium on Parallel and Distributed Computing (AusPDC2015), Australia, vol. 2730, pp. 41–50 (2015)

  13. Zhao, S., Cai, S., Kang, K., Qian, H.: Optimal transmission power in a nonlinear VLC system. In: Global Conference on Signal and Information Processing (GlobalSIP). IEEE, pp. 1180–1184 (2015)

  14. Elgala, H., Mesleh, R., Haas, H., Pricope, B.: OFDM visible light wireless communication based on white LEDs. In: 65th Vehicular Technology Conference-VTC2007-Spring. IEEE, pp. 2185–2189 (2007)

  15. Hranilovic, S.: On the design of bandwidth efficient signalling for indoor wireless optical channels. Int. J. Commun. Syst. 18(3), 205–228 (2005)

    Article  Google Scholar 

  16. Abu-Alhiga, R., Haas, H.: Subcarrier-index modulation OFDM. In: 20th International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, pp. 177–181 (2009)

  17. Tsonev, D., Sinanovic, S., Haas, H.: Enhanced subcarrier index modulation (SIM) OFDM. In: GLOBECOM Workshops (GC Wkshps). IEEE, pp. 728–732 (2011)

  18. Ahsan, M., Asif, H.M.: ESIM-OFDM-based transceiver design of a visible light communication system. Int. J. Commun. Syst. (2016). http://onlinelibrary.wiley.com/doi/10.1002/dac.2943/full

  19. Yi, Y., Lee, K., Lee, K.: Performance analysis of indoor visible lighting communication using spread codes. In: 9th International Symposium on Communications and Information Technology, ISCIT. IEEE, pp. 1252–1257 (2009)

  20. Elfade, N., Idriss, E., Mohammed, A., Aziz, A., Saad, N.: Multi-user Detection for the optical CDMA: one stage optical parallel interference cancellation. In: International Conference on Signal Processing, Communications and Networking, ICSCN’07. IEEE, pp. 290–293 (2007)

  21. Wong, K., O’Farrell, T.: Spread spectrum techniques for indoor wireless IR communications. IEEE Wirel. Commun. 10(2), 54–63 (2003)

    Article  Google Scholar 

  22. Png, L.C., Xiao, L., Yeo, K.S., Wong, T.S., Guan, Y.L.: MIMO-diversity switching techniques for digital transmission in visible light communication. In: IEEE Symposium on Computers and Communications (ISCC). IEEE, pp. 000576–000582 (2013)

  23. Alamouti, S.M.: A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998)

    Article  Google Scholar 

  24. Sethuraman, B., Rajan, B.S., Shashidhar, V.: Full-diversity, high-rate space-time block codes from division algebras. IEEE Trans. Inf. Theory 49(10), 2596–2616 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. de Souza, J.J., Stevan, S.L., Pompermaier, M.A.C., de Matos, J., palhano da Fonseca, Z.: Project of a communication system by visible light comunication (VLC) based on led lighting. Iberoam. J. Appl. Comput. 3(3) (2014)

  26. Schreier, R., Temes, G.C.: The First Order Delta Sigma Modulator. Wiley-IEEE Press, Hoboken (2009)

    Google Scholar 

  27. Sklar, B.: Digital Communications, vol. 2. Prentice Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  28. Yang, S .C.: CDMA RF System Engineering. Artech House, Inc., Norwood (1998)

    Google Scholar 

  29. Kanmani, R., Sankaranarayanan, K., Princy, F.I.: Analysis of indoor wireless infrared optical CDMA LAN using prime codes. Wseas Trans. Commun. (8) (2012)

  30. Khalid, A., Cossu, G., Corsini, R., Choudhury, P., Ciaramella, E.: 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics J. 4(5), 1465–1473 (2012)

    Article  Google Scholar 

  31. Choi, J.H., Koo, S.W., Kim, J.Y.: Influence of optical path difference on visible light communication systems. In: 9th International Symposium on Communications and Information Technology, ISCIT 2009. IEEE, pp. 1247–1251 (2009)

  32. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System and Channel Modelling with Matlab®. CRC Press, Boca Raton (2012)

    Google Scholar 

  33. Al-Kinani, A., Wang, C.-X., Haas, H., Yang, Y.: Characterization and modeling of visible light communication channels. In: 83rd Vehicular Technology Conference (VTC Spring). IEEE, pp. 1–5 (2016)

  34. Chizari, A., Jamali, M.V., Salehi, J.A., Dargahi, A.: Designing a dimmable OPPM-based VLC system under channel constraints. In: 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 20–22 (July 2016)

  35. NI 9174, National Instruments. www.ni.com/pdf/manuals/374045a.pdf

  36. NI 9201, National Instruments. http://sine.ni.com/nips/cds/view/p/lang/en/nid/208798

  37. NI 9263, National Instruments. http://sine.ni.com/nips/cds/view/p/lang/en/nid/208806

  38. OPT101 monolithic photodiode and single-supply transimpedance amplifier. Texas Instruments (June 2015). www.ti.com/lit/ds/symlink/opt101.pdf

Download references

Acknowledgements

The authors would like to appreciate the support by COMSATS Institute of Information Technology, Lahore, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arslan Khalid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, A., Asif, H.M. OCDMA and OSTBC based VLC transceiver design using NI cDAQ. Photon Netw Commun 35, 97–108 (2018). https://doi.org/10.1007/s11107-017-0722-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0722-z

Keywords

Navigation