Skip to main content
Log in

Enhanced performance of all-optical half-subtracter based on cross-gain modulation (XGM) in semiconductor optical amplifier (SOA) by accelerating its gain recovery dynamics

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this article, the acceleration attained in gain recovery dynamics of travelling-wave-type semiconductor optical amplifier (SOA) at the expense of structural optimization is illustrated via numerical simulations. A pump–probe scheme has been utilized in order to study the outcomes of optimization of SOA operational and structural parameters on its effective gain recovery time (\({\tau _\mathrm{e}}\)). A set of optimized SOA parameters are formulated from gain recovery dynamics studies after keeping practical implementation considerations in vision. Further, the impacts of altering SOA structural and operational parameters such as injection current (I), amplifier length (L), active region width (w), active region thickness (t) and optical confinement factor (\({\varGamma } \)) on gain recovery time improvement achieved are further investigated on the performance of a cross-gain modulation (XGM) in SOA-based all-optical half-subtracter in terms of two designated performance metrics: quality factor (Q-factor) and extinction ratio (ER). It has been revealed that reduced gain recovery time-optimized SOAs-based all-optical half-subtracter arranged in a co-propagating manner exhibits improved Q-factor and ER (dB) performance at high bit rates of operation (\(\le \)80 Gbps).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Siarkos, T., Zoiros, K.E., Nastou, D.: On the feasibility of full-pattern operated all-optical XOR gate with single semiconductor optical amplifier based ultrafast nonlinear interferometer. Opt. Commun. 282, 2729–2740 (2009)

    Article  Google Scholar 

  2. Singh, K., Kaur, G.: Interferometric architectures based all-optical logic design methods and their implementations. Opt. Laser Technol. 69, 122–132 (2015)

    Article  Google Scholar 

  3. Li, P.-L., Huang, D.-X., Zhang, X.-L.: SOA based ultrafast multifunctional all-optical logic gates with PolSK modulated signals. IEEE J. Quantum Electron. 45, 1542–1550 (2009)

    Article  Google Scholar 

  4. Lei, L., Dong, J., Yu, Y., Tan, S., Zhang, X.: All-optical canonical logic units-based programmable logic array (CLUs-PLA) using semiconductor optical amplifiers. J. Lightwave Technol. 30, 3532–3539 (2012a)

    Article  Google Scholar 

  5. Dai, B., Shimizu, S., Wang, X., Wada, N.: Simultaneous all-optical half-adder and half-subtracter based on two semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 25, 91–93 (2013)

    Article  Google Scholar 

  6. Singh, K., Kaur, G., Singh, M.L.: A single As\(_{2}\)Se\(_{3}\) chalcogenide highly non-linear fiber (HNLF) based simultaneous all-optical half-adder and half-subtracter. Opt. Fiber Technol. 24, 56–63 (2015)

    Article  Google Scholar 

  7. Singh, K., Kaur, G., Singh, M.L.: A cascadable all-optical half-subtracter based on cross-modulation effects in a single highly nonlinear fiber (HNLF). Opt. Quantum Electron. 48, 1–21 (2016)

    Article  Google Scholar 

  8. Singh, K., Kaur, G., Singh, M.L.: Simultaneous all-optical half-adder, half-subtracter, comparator and decoder based on non-linear effects harnessing in highly nonlinear fibres. Opt. Eng. 55, 077104 (2016)

    Article  Google Scholar 

  9. Tsiokos, D., Kehayas, E., Vyrsokinos, T., Houbavlis, T., Stampoulidis, L., Kanellos, G.T., Pleros, N., Guekos, G., Avramopoulos, H.: 10-Gb/s all-optical half-adder with interferometric SOA gates. IEEE Photon. Technol. Lett. 16, 284–286 (2004)

    Article  Google Scholar 

  10. Kim, S.H., Kim, J.H., Choi, J.W., Son, C.W., Byun, Y.T., Jhon, Y.M., Lee, S., Woo, D.H., Kim, S.H.: All-optical half adder using cross gain modulation in semiconductor optical amplifiers. Opt. Express 14, 10693–10698 (2006)

    Article  Google Scholar 

  11. Li, L.P., Xiu, H.D., Xi, Z.G.: Ultrahigh-speed all-optical half adder based on four-wave mixing in semiconductor optical amplifier. Opt. Express 14, 11839–11847 (2006)

    Article  Google Scholar 

  12. Wang, J., Sun, J., Sun, Q.: Single-PPLN-based simultaneous half-adder, half-subtracter and OR logic gates: proposal and simulation. Opt. Express 15, 1690–1699 (2007)

    Article  Google Scholar 

  13. McGeehan, J.E., Kumar, S., Willner, A.E.: Simultaneous optical digital half-subtraction and-addition using SOAs and a PPLN waveguide. Opt. Express 15, 5543–5549 (2007)

    Article  Google Scholar 

  14. Shen, J., Yu, S., Liao, P., Chen, Z., Gu, W., Guo, H.: All-optical full adder based on cascaded PPLN waveguides. IEEE J. Quantum Electron. 47, 1195–1200 (2011)

    Article  Google Scholar 

  15. Gayen, D.K., Roy, J.N., Pal, R.K.: All-optical carry lookahead adder with the help of terahertz optical asymmetric demultiplexer. Optik 123, 40–45 (2012b)

    Article  Google Scholar 

  16. Lei, L., Dong, J., Zhang, Y., He, H., Yu, Y., Zhang, X.: Reconfigurable photonic logic full-adder and full-subtracter based on three-input XOR gate and logic minterms. Electron. Lett. 48, 399–400 (2012b)

    Article  Google Scholar 

  17. Gayen, D.K., Bhattachryya, A., Chattopadhyay, T., Roy, J.N.: Ultrafast all-optical half-adder using quantum-dot semiconductor optical amplifier-based mach-zehnder interferometer. J. Lightwave Technol. 30, 3387–3393 (2012a)

    Article  Google Scholar 

  18. Gui, C., Wang, J.: Simultaneous optical half-adder and half-subtracter using a single-slot waveguide. IEEE Photon. J. 5, 684–691 (2013)

    Article  Google Scholar 

  19. Zhang, X., Huang, X., Dong, J., Yu, Y., Xu, J., Huang, D., et al.: All-optical signal processing with semiconductor optical amplifiers and tunable filters, pp. 337–368. In Advances in Lasers and Electro Optics, InTech, Croatia (2010)

  20. Connelly, M.J.: Semiconductor Optical Amplifiers. Kluwer, Boston (2002)

    Google Scholar 

  21. Agrawal, G.P., Olsson, N.A.: Self phase modulation and spectral broadening of optical pulses in semiconductor optical amplifiers. IEEE J. Quantum Electron. 25, 2297–2306 (1989)

    Article  Google Scholar 

  22. Olsson, N.A., Agrawal, G.P.: Spectral shift and distortion due to self-phase modulation of picosecond pulses in 1.5 \(\mu \)m optical amplifiers. Appl. Phys. Lett. 55, 13–15 (1989)

    Article  Google Scholar 

  23. Baveja, P.P., Maywar, D.N., Agrawal, G.P.: Interband four-wave-mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery. IEEE J. Sel. Top. Quantum Electron. 18, 899–908 (2012)

    Article  Google Scholar 

  24. Zhang, L., Kang, I., Bhardwaj, A., Sauer, N., Cabot, S., Jaques, J., Nielson, D.T.: Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells. IEEE Photon. Technol. Lett. 18, 2323–2325 (2006)

    Article  Google Scholar 

  25. Gao, M. N., Gay, M., Bramerie, L., Girault, G., Le, Q. T., Simon, J. -C., Brenot, R., Duan, G. -H., Reid, D., Barry, L.: Characterization of semiconductor optical amplifiers for all-optical regeneration. In: International workshop on Photon. and Applications (IWPA 2008), Nha Thang, Vietnam, 143–147 (2008)

  26. Girardin, F., Guekos, G., Houbavlis, A.: Gain recovery of bulk semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 10, 784–786 (1998)

    Article  Google Scholar 

  27. Singh, S., Lovkesh, Ye, X., Kaler, R.S.: Design and ultrafast encryption and decryption circuits for secured optical networks. IEEE J. Quantum Electron 48, 1547–1553 (2012)

    Article  Google Scholar 

  28. Singh, S., Kaur, R., Kaler, R.S.: Photonic processing for all-optical logic gates based on semiconductor optical amplifier. Opt. Eng. 53, 116102 (2014)

    Article  Google Scholar 

  29. Singh, S., Kaur, R., Kaler, R.S.: Photonic processing and realization of an all-optical digital comparator based on semiconductor optical amplifiers. Opt. Eng. 54, 016104 (2015)

    Article  Google Scholar 

  30. Pleumeekers, J.L., Kauer, M., Dreyer, K., Burrus, C., Dentai, A.G., Shunk, S., Leuthold, J., Joyner, C.H.: Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photon. Technol. Lett. 14, 12–14 (2002)

    Article  Google Scholar 

  31. Xu, S., Khurgin, J.B., Vurgaftman, I., Meyer, J.R.: Reducing crosstalk and distortion in wavelength-division multiplexing by increasing carrier lifetimes in semiconductor optical amplifiers. J. Lightwave Technol. 21, 1474–1485 (2003)

    Article  Google Scholar 

  32. Singh, S., Kaler, R.S.: Minimization of cross-gain saturation in wavelength division multiplexing by optimizing differential gain in semiconductor optical amplifiers. Fiber Integr. Opt. 25, 287–303 (2006)

    Article  Google Scholar 

  33. Cabezón, M., Villafranca, A., Martinez, J.J., Izequierdo, D., Garcés, I.: Integrated multi-bit all-optical NOR gate for high speed data processing. J. Lightwave Technol. 31, 1178–1184 (2013)

    Article  Google Scholar 

  34. Kaur, G., Singh, M.L., Patterh, M.S.: Theoretical investigations of the combined effect of fiber nonlinearities, amplifier and receiver noise in a DWDM transmission system. J. Opt. Fiber Commun. Res. 6, 1–10 (2009)

    Article  Google Scholar 

  35. Dailey, J.M., Ibrahim, S.K., Manning, R.J., Webb, R.P., Lardenois, S., Maxwell, G.D., Poustie, A.J.: 42.6 Gbit /s fully integrated all-optical XOR gate. Electron. Lett. 45, 1047–1049 (2009)

    Article  Google Scholar 

  36. Yan, N., Puente, J.V., Silveira, T.G., Teixeira, A., Ferreira, A.P.S., Tangdiongga, E., Monteiro, P., Koonen, A.M.J.: Simulation and experimental characterization of SOA-MZI-based multiwavelength conversion. J. Lightwave Technol. 27, 117–126 (2009)

    Article  Google Scholar 

  37. Kang, I., Dorrer, C., Leuthold, J.: All-optical XOR operation of 40 Gbit/s phase-shift-keyed data using four-wave mixing in semiconductor optical amplifier. Electron. Lett. 40, 496–498 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karamdeep Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Kaur, G. & Singh, M.L. Enhanced performance of all-optical half-subtracter based on cross-gain modulation (XGM) in semiconductor optical amplifier (SOA) by accelerating its gain recovery dynamics. Photon Netw Commun 34, 111–130 (2017). https://doi.org/10.1007/s11107-016-0677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0677-5

Keywords

Navigation