Skip to main content
Log in

Pressureless Spark Plasma Sintering: A Perspective from Conventional Sintering to Accelerated Sintering Without Pressure

  • THEORY AND TECHNOLOGY OF SINTERING, THERMAL AND THERMOCHEMICAL TREATMENT
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Spark plasma sintering (SPS) has been an attractive technique for many researchers seeking to consolidate metals and ceramics. This technique’s high heating rates with the support of simultaneous applied pressure result in highly densified materials. One of the most important effects of a high heating rate is the limitation of grain growth, which results in enhanced mechanical properties. Recently, a relatively new form of SPS with its own unique advantages was developed and is most commonly referred to as pressureless spark plasma sintering (PSPS). There has been an increase in the usage of this method in several applications such as porous material production, sintering of materials with a finer grain structure, and consolidation of green bodies in a short time. Although there have been many studies on PSPS, there is currently no review of the pressureless applications of SPS. This paper provides a link from SPS to PSPS and discusses the different applications in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. C. Maniere, E. Nigito, L. Durand, A. Weibel, Y. Beynet, and E. Estournes, “Spark plasma sintering and complex shapes: The deformed interfaces approach,” Powder Technol., 320, 340–345 (2017).

  2. R. Yamanoglu, E. Karakulak, and M. Zeren, “Mechanical and wear properties of prealloyed molybdenum P/M steels with nickel addition,” J. Min. Metall. B: Metall., 48, No. 2, 251–258 (2012).

    Article  Google Scholar 

  3. W.D. Jones, Fundamental Principles of Powder Metallurgy, Edward Arnold, London (1960).

  4. C.G. Goetzel, Treatise on Powder Metallurgy: Technology of Metal Powders and Their Products, Vol. 1, Interscience Publishers (1949).

  5. P.C. Angelo and R. Submarinan, Powder Metallurgy: Science, Technology and Applications, PHI Learning Pvt. Ltd. (2008).

  6. R.M. German, “History of sintering: empirical phase,” Powder Metall., 56, No. 2, 117–123 (2013).

    Article  Google Scholar 

  7. P. Ramakrishnan, “History of powder metallurgy,” Indian J. Hist. Sci., 18, No. 1, 109–114 (1983).

    Google Scholar 

  8. S.Ya. Plotkin and G.L. Fridman, “History of powder metallurgy and its literature,” Powder Metall. Met. Ceram., 13, No. 12, 1026–1029 (1974).

  9. R.M. German, Sintering: from Empirical Observations to Scientific Principles, Butterworth–Heinemann (2014).

  10. R.M. German, “Sintering trajectories: description on how density, surface area, and grain size change,” JOM, 68, No. 3, 878–884 (2016).

  11. V.N. Chuvil’deev, M.S. Boldin, A.V. Nokhrin, and A.A. Popov, “Advanced materials obtained by spark plasma sintering,” Acta Astronaut., 135, 192–197 (2017).

    Article  Google Scholar 

  12. J. Choi, H.M. Sung, K.B. Roh, S.H. Hong, G.H. Kim, and H.F. Han, “Fabrication of sintered tungsten by spark plasma sintering and investigation of thermal stability,” Int. J. Refract. Met. Hard Mater., 69, 164–169 (2017).

    Article  Google Scholar 

  13. D. Salvato, J.F. Vigier, M. Cologna, L. Luzzi, J. Somers, and V. Tyrpekl, “Spark plasma sintering of fine uranium carbide powder,” Ceram. Int., 43, No. 1, 866–869 (2017).

    Article  Google Scholar 

  14. S. Bahrami, M. Zakeri, A. Faeghinia, and M.R. Rahimipour, “Spark plasma sintering of silicon nitride/barium aluminum silicate composite,” Ceram. Int., 43, No. 12, 9153–9157 (2017).

    Article  Google Scholar 

  15. M.M. Tünçay, J.A. Muñiz-Lerma, D.P. Bishop, and M. Brochu, “Spark plasma sintering and spark plasma upsetting of an Al–Zn–Mg–Cu alloy,” Mater. Sci. Eng. A, 704, 154–163 (2017).

    Article  Google Scholar 

  16. Suk-Joong L. Kang, Sintering: Densification, Grain Growth and Microstructure, Butterworth–Heinemann (2004).

  17. R.M. German, Sintering Theory and Practice, John Wiley & Sons, Inc. (1996).

  18. S.H. Chang and P.Y. Chang, “Study on the mechanical properties, microstructure and corrosion behaviors of nano-WC–Co–Ni–Fe hard materials through HIP and hot-press sintering processes,” Mater. Sci. Eng. A, 618, 56–62 (2014).

    Article  Google Scholar 

  19. R. Yamanoglu, “In situ aluminum alloy coating on magnesium by hot pressing,” Acta Metall. Sin., 28, No. 8, 1059–1064 (2015).

    Article  Google Scholar 

  20. R. Yamanoglu, “Production and characterization of Al–xNi in situ composites using hot pressing,” J. Min. Metall. Sect. B: Metall., 50, No. 1, 45 (2014).

  21. J.E. Garay, “Current-activated, pressure-assisted densification of materials,” Annu. Rev. Mater. Res., 40, 445–468 (2010).

    Article  Google Scholar 

  22. Y. Guo, H. Guo, B. Gao, X. Wang, Y. Hu, and Z. Shi, “Rapid consolidation of ultrafine grained W–30 wt.% Cu composites by field assisted sintering from the sol–gel prepared nanopowders,” J. Alloys Compd., 724, 155–162 (2017).

    Article  Google Scholar 

  23. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Adv. Eng. Mater., 16, No. 7, 830–849 (2014).

    Article  Google Scholar 

  24. D.V. Dudina, A.G. Anisimow, V.I. Mali, N.V. Bulina, and B.B. Bokhonow, “Smaller crystallites in sintered materials? A discussion of the possible mechanisms of crystallite size refinement during pulsed electric current assisted sintering,” Mater. Lett., 144, 168–172 (2015).

    Article  Google Scholar 

  25. D. Ren, Q. Deng, J. Wang, Y. Li, M. Li, S. Ran, and Q. Huang, “Densification and mechanical properties of pulsed electric current sintered B4C with in situ synthesized Al3BC obtained by the molten-salt method,” J. Eur. Ceram. Soc., 37, No. 15, 4524–4531 (2017).

    Article  Google Scholar 

  26. Y. Kodera, C.L. Hardin, and J.E. Garay, “Transmitting, emitting and controlling light: Processing of transparent ceramics using current-activated pressure-assisted densification,” Scr. Mater., 69, No. 2, 149–154 (2013).

    Article  Google Scholar 

  27. J.E. Alaniz, A.D. Dupuy, Y. Kodera, and J.E. Garay, “Effects of applied pressure on the densification rates in current-activated pressure-assisted densification (CAPAD) of nanocrystalline materials,” Scr. Mater., 92, 7–10 (2014).

    Article  Google Scholar 

  28. R. Muccillo and E.N.S. Muccillo, “Light emission during electric field-assisted sintering of electroceramics,” J. Eur. Ceram. Soc., 35, No. 5, 1653–1656 (2015).

    Article  Google Scholar 

  29. R. Muccillo and E.N.S. Muccillo, “Shrinkage control of yttria-stabilized zirconia during ac electric field-assisted sintering,” J. Eur. Ceram. Soc., 34, No. 15, 3871–3877 (2014).

    Article  Google Scholar 

  30. Z. Liu, D. Wang, J. Li, Q. Huang, and S. Ran, “Densification of high-strength B4C–TiB2 composites fabricated by pulsed electric current sintering of TiC–B mixture,” Scr. Mater., 135, 15–18 (2017).

    Article  Google Scholar 

  31. B. Wang, S. Zhao, F. Ojima, J.F. Yang, and K. Ishizaki, “Pulse electric current sintering of 3D interpenetrating SiC/Al composites,” Ceram. Int., 43, No. 2, 2867–2870 (2017).

    Article  Google Scholar 

  32. Zuahir A. Munir, V. Quach Dat, and M. Ohyanagi, “Sintering: electric field and current effects on sintering,” Springer, 35, 137–158 (2012).

  33. T. Ironman, J. Tulenko, and G. Subhash, “Exploration of viability of spark plasma sintering for commercial fabrication of nuclear fuel pellets,” Nucl. Technol., 1–15 (2017).

  34. P. Vivekanandhan, R. Murugasami, and S. Kumaran, “Rapid in-situ synthesis of nanocrystalline magnesium silicide thermo-electric compound by spark plasma sintering,” Mater. Lett., 197, 106–110 (2017).

    Article  Google Scholar 

  35. L. Zhang, Z.Y. He, Y.Q. Zhang, Y.H. Jiang, and R. Zhou, “Enhanced in vitro bioactivity of porous NiTi–HA composites with interconnected pore characteristics prepared by spark plasma sintering,” Mater. Des., 101, 170–180 (2016).

    Article  Google Scholar 

  36. N. Jiang, R. J. Xie, Q. Liu, and J. Li, “Fabrication of sub-micrometer MgO transparent ceramics by spark plasma sintering,” J. Eur. Ceram. Soc., 37, No. 15, 4947–4953 (2017).

    Article  Google Scholar 

  37. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, “The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method,” J. Mater. Sci., 41, No. 3, 763–777 (2006).

    Article  Google Scholar 

  38. G.F. Taylor, US Patent No. 1,896,854 (1933).

  39. G. Xie, “Spark plasma sintering: a useful technique to develop large-sized bulk metallic glasses,” J. Powder Metall. Min., 2, e109 (2013).

    Article  Google Scholar 

  40. A.G. Bloxam, Improved Manufacture of Electric Incandescence Lamp Filaments from Tungsten of Molybdenum or an Alloy Thereof, GB Patent No. 190527002 (1906).

  41. A.G. Bloxam, Improved Manufacture of Filaments of Tungsten or Molybdenum for Electric Incandescence Lamps. GB Patent No. 190609020 (1906).

  42. Y. Cheng, Z. Cui, L. Cheng, D. Gong, and W. Wang, “Effect of particle size on densification of pure magnesium during spark plasma sintering,” Adv. Powder Technol., 28, No. 4, 1129–1135 (2017).

    Article  Google Scholar 

  43. J. Cui, L. Zhao, W. Zhu, B. Wang, C. Zhao, L. Fang, and F. Ren, “Antibacterial activity, corrosion resistance and wear behavior of spark plasma sintered Ta–5Cu alloy for biomedical applications,” J. Mech. Behav. Biomed. Mater., 74, 315–323 (2017).

    Article  Google Scholar 

  44. C.A. Stanciu, M. Cernea, E.C. Secu, G. Aldica, P. Ganea, and R. Trusca, “Lanthanum influence on the structure, dielectric properties and luminescence of BaTiO3 ceramics processed by spark plasma sintering technique,” J. Alloys Compd., 706, 538–545 (2017).

    Article  Google Scholar 

  45. M. Asadikiya, C. Zhang, C. Rudolf, B. Boesl, A. Agarwal, and Y. Zhong, “The effect of sintering parameters on spark plasma sintering of B4C,” Ceram. Int., 43, No. 14, 11182–11188 (2017).

    Article  Google Scholar 

  46. A. Azarniya, A. Azarniya, S. Sovizi, H.R.M. Hosseini, T. Varol, A. Kawasaki, and S. Ramakrishna, “Physicomechanical properties of spark plasma sintered carbon nanotube-reinforced metal matrix nanocomposites,” Prog. Mater. Sci., 90, 276–324 (2017).

    Article  Google Scholar 

  47. A. Pakdel, A. Witecka, G. Rydzek, and D.N.A. Shri, “A comprehensive microstructural analysis of Al–WC micro-and nano-composites prepared by spark plasma sintering,” Mater. Des., 119, 225–234 (2017).

    Article  Google Scholar 

  48. M. Bahraminasab, S. Ghaffari, and H. Eslami-Shahed, “Al2O3–Ti functionally graded material prepared by spark plasma sintering for orthopedic applications,” J. Mech. Behav. Biomed. Mater., 72, 82–89 (2017).

    Article  Google Scholar 

  49. T. Fujii, K. Tohgo, H. Isono, and Y. Shimamura, “Fabrication of a PSZ–Ti functionally graded material by spark plasma sintering and its fracture toughness,” Mater. Sci. Eng. A, 682, 656–663 (2017).

    Article  Google Scholar 

  50. A. Teber, F. Schoenstein, F. Tetard, M. Abdellaoui, and N. Jouini, “Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tools application,” Int. J. Refract. Met. Hard Mater., 30, No. 1, 64–70 (2012).

    Article  Google Scholar 

  51. X. Yao, Z. Huang, L. Chen, D. Jiang, S. Tan, D. Michel, G. Wang, L. Mazerolles, and J.L. Pastol, “Alumina–nickel composites densified by spark plasma sintering,” Mater. Lett., 59, No. 18, 2314–2318 (2005).

    Article  Google Scholar 

  52. R. Yamanoglu, W. Bradbury, E. Karakulak, E.A. Olevsky, and R.M. German, “Characterization of nickel alloy powders processed by spark plasma sintering,” Powder Metall., 57, No. 5, 380–386 (2014).

    Article  Google Scholar 

  53. G. Antou, P. Guyot, N. Pradeilles, M. Vandenhende, and A. Maître, “Identification of densification mechanisms of pressure-assisted sintering: application to hot pressing and spark plasma sintering of alumina,” J. Mater. Sci., 50, No. 5, 2327–2336 (2015).

    Article  Google Scholar 

  54. Yann Aman, Vincent Garnier, and Elisabeth Djurado, “Pressureless spark plasma sintering effect on nonconventional necking process during the initial stage of sintering of copper and alumina,” J. Mater. Sci., 47, No. 15, 5766–5773 (2012).

    Article  Google Scholar 

  55. William L. Bradbury and Eugene A. Olevsky, “Production of SiC–C composites by free-pressureless spark plasma sintering (FPSPS),” Scr. Mater., 63, No. 1, 77–80 (2010).

    Article  Google Scholar 

  56. D. Giuntini, X. Wei, A.L. Maximenko, L. Wei, A.M. Ilyina, and E.A. Olevsky, “Initial stage of free pressureless spark-plasma sintering of vanadium carbide: Determination of surface diffusion parameters,” Int. J. Refract. Met. Hard Mater., 41, 501–506 (2013).

    Article  Google Scholar 

  57. L. Bertolla, I. Dlouhý, P. Tatarko, A. Viani, A. Mahajan, Z. Chlup, M. Reece, and A.R. Boccaccini, “Pressureless spark plasma–sintered Bioglass® 45S5 with enhanced mechanical properties and stress–induced new phase formation,” J. Eur. Ceram. Soc., 37, No. 7, 2727–2736 (2017).

    Article  Google Scholar 

  58. Dina V. Dudina, Boris B. Bokhonov, and Amiya K. Mukherjee, “Formation of aluminum particles with shell morphology during pressureless spark plasma sintering of Fe–Al mixtures: current-related or Kirkendall effect?” Materials, 9, No. 5, 375 (2016).

  59. R. Yamanoglu, N. Gulsoy, E.A. Olevsky, and H.O. Gulsoy, “Production of porous Ti5Al2.5Fe alloy via pressureless spark plasma sintering,” J. Alloys Compd., 680, 654–658 (2016).

    Article  Google Scholar 

  60. Rachman Chaim, “Liquid film capillary mechanism for densification of ceramic powders during flash sintering,” Materials, 9, No. 4, 280 (2016).

  61. J. Meng, N.H. Loh, B.Y. Tay, S.B. Tor, G. Fu, K.A. Khor, and L. Yu, “Pressureless spark plasma sintering of alumina micro-channel part produced by micro powder injection molding,” Scr. Mater., 64, No. 3, 237–240 (2011).

    Article  Google Scholar 

  62. Y.S. Lin, M.A. Meyers, and E.A. Olevsky, “Microchanneled hydroxyapatite components by sequential freeze drying and free pressureless spark plasma sintering,” Adv. Appl. Ceram., 111, Nos. 5–6, 269–274 (2012).

  63. F. Zhang, K. Lin, J. Chang, J. Lu, and C. Ning, “Spark plasma sintering of macroporous calcium phosphate scaffolds from nanocrystalline powders,” J. Eur. Ceram. Soc., 28, No. 3, 539–545 (2008).

    Article  Google Scholar 

  64. Y. Quan, F. Zhang, H. Rebl, B. Nebe, O. Keßler, and E. Burkel, “Ti6Al4V foams fabricated by spark plasma sintering with post-heat treatment,” Mater. Sci. Eng. A, 565, 118–125 (2013).

    Article  Google Scholar 

  65. David Salamon and Zhijian Shen, “Pressureless spark plasma sintering of alumina,” Mater. Sci. Eng. A, 475, No. 1, 105–107 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yamanoglu.

Additional information

Published in Poroshkova Metallurgiya, Vol. 57, Nos. 9–10 (523), pp. 22–36, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamanoglu, R. Pressureless Spark Plasma Sintering: A Perspective from Conventional Sintering to Accelerated Sintering Without Pressure. Powder Metall Met Ceram 57, 513–525 (2019). https://doi.org/10.1007/s11106-019-00010-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-019-00010-1

Keywords

Navigation