Skip to main content
Log in

Hardening in the Transition to Nanocrystalline State in Pure Metals and Solid Solutions (Ultimate Hardening)

  • NANOSTRUCTURED MATERIALS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The state of the grain boundaries and the solid solution is analyzed for influence on the yield stress over a wide range of grain sizes for pure metals, low-doped alloys, and multicomponent solid solutions, including high-entropy alloys. A generalized equation is derived using the averaging integrals to describe the yield stress and hardness normalized to Young’s modulus versus the grain size. The potential to reach the maximum hardening for nanostructured materials through the use of grain-boundary engineering is considered. The concept of ‘useful’ impurities intended to bring the strength of such materials to the level comparable with the maximum (theoretically) possible one (E/2π–E/30) is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. A. H. Chokshi and A. Rosen, “On the validity of the Hall–Petch relationship in nanocrystalline materials,” Scr. Metall. Mater., 23, 1679–1683 (1989).

    Article  Google Scholar 

  2. V. A. Pozdnyakov and M. A. Glezer, “On anomalies of the Hall–Petch relation for nanomaterials,” Pis’ma Zh. Exp. Teor. Fiz., 21, No. 1, 31–36 (1995).

    Google Scholar 

  3. H. Conrad and J. Narayan, “On the grain size softening in nanocrystalline materials,” Scr. Mater., 42, No. 11, 1025–1030 (2000).

    Article  Google Scholar 

  4. R. A. Andrievskii and A. M. Glezer, “Size effects in nanocrystalline materials. II. Mechanical and physical properties,” Fiz. Met. Metalloved., 89, No. 1, 91–112 (2000).

    Google Scholar 

  5. C. Carlton and P. J. Ferreira, “What is behind the inverse Hall–Petch behavior in nanocrystalline materials,” Acta Mater., 55, 3749–3756 (2007).

    Article  Google Scholar 

  6. G. A. Malygin, “Ductility and strength of micro- and nanocrystalline materials (overview),” Fiz. Tverd. Tela, 49, No. 6, 961–982 (2007).

    Google Scholar 

  7. U. F. Kocks, “The relation between polycrystal deformation and single crystal deformation,” Metall. Trans., 1, No. 5, 1121–1143 (1970).

    Article  Google Scholar 

  8. G. Langford and M. Cohen, “Strain hardening of iron by severe plastic deformation,” Trans. Am. Soc. Mech. Eng., 62, 623–638 (1969).

    Google Scholar 

  9. A. W. Thompson, “Substructure strengthening mechanisms,” Metall. Trans., 8A, No. 6, 833–842 (1977).

    Article  Google Scholar 

  10. S. A. Firstov, T. G. Rogul, and O. A. Shut, “Strengthening of polycrystals in transition from micro- to nanostructured state,” Fiz. Khim. Mekh. Mater., No. 6, 5–12 (2009).

  11. S. A. Firstov, T. G. Rogul, and O. A. Shut, “Generalized dependence of yield stress on grain size,” Deform. Razrush. Mater., No. 1, 2–10 (2015).

  12. S. A. Firstov, T. G. Rogul, and S. N. Dub, “Grain boundary engineering of nanostructured chromium films,” in: Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing (May 12–15, 2004, Kyiv, Ukraine), Springer (2005), pp. 225–232.

  13. S. O. Firstov, T. G. Rogul, V. L. Svechnikov, et al., “Concept of useful impurities and mechanical properties of chromium and molybdenum films,” Fiz. Khim. Mekh. Mater., 42, No. 1, 113–119 (2006).

    Google Scholar 

  14. O. E. Hall, “Deformation and ageing of mild steel,” Proc. Phys. Soc. London, Sect. B, 64, No. 1, 747–753 (1951).

    Article  Google Scholar 

  15. N. J. Petch, “The cleavage strength of polycrystals,” J. Iron Steel Inst., 174, 25–28 (1953).

    Google Scholar 

  16. H. Conrad, “Work-hardening model for the effect of grain size on the flow stress of metals,” in: J. J. Burke and V. Weiss (eds.), Ultrafine-Grain Metals, Syracuse University Press (1970).

  17. G. Palumbo, U. Erb, and K. T. Aust, “Triple line disclination effects on the mechanical behavior of materials,” Scr. Metall. Mater., 24, 2347–2350 (1990).

    Article  Google Scholar 

  18. M. Yu. Gutkin and I. A. Ovid’ko, Physical Mechanics of Work-Hardened Structure. Vol. 1. Nanocrystalline Materials [in Russian], Inst. Probl. Mashinostr. RAN, Saint Petersburg (2003), p. 194.

    Google Scholar 

  19. V. G. Gryaznov, M. Yu. Gutkin, A. E. Romanow, et al., “On the yield stress of nanocrystals,” J. Mater. Sci., 28, No. 16, 4359–4365 (1993).

    Article  Google Scholar 

  20. H. S. Kim, Y. Estrin, and M. B. Bush, “Plastic deformation behavior of fine-grained materials,” Acta Mater., 48, No. 2, 493–504 (2000).

    Article  Google Scholar 

  21. S. Takeuchi, “The mechanism of the inverse Hall–Petch relation of nanocrystals,” Scr. Mater., 44, 1483–1487 (2001).

    Article  Google Scholar 

  22. S. G. Zaichenko and A. M. Glezer, “Disclination mechanism of plastic deformation of nanocrystalline materials,” Fiz. Tverd. Tela, 39, No. 11, 2023–2028 (1997).

    Google Scholar 

  23. V. A. Pozdyankov, “Plastic deformation mechanisms and anomalies of the Hall–Petch relation for nanocrystalline materials,” Fiz. Met. Metalloved., 96, No. 1, 114–128 (2003).

    Google Scholar 

  24. M. P. Phaniraj, M. J. Prasad, and A. H. Chokshi, “Grain-size distribution effects in plastic flow and failure,” Mater. Sci. Eng. A, 463, 231–237 (2007).

    Article  Google Scholar 

  25. G. A. Malygin, “Effect of grain-size distribution on the strength and ductility of nanocrystalline materials,” Fiz. Tverd. Tela, 50, No. 6, 1013–1017 (2008).

    Google Scholar 

  26. X. Z. Liao, S. G. Srinivasan, Y. H. Zhao, et al., “Formation mechanism of wide stacking faults in nanocrystalline Al,” Appl. Phys. Lett., 84, No. 17, 1–3 (2004).

    Google Scholar 

  27. H. Hahn and K. A. Radmanabhan, “A model for the deformation of nanocrystalline materials,” Philos. Mag. B, 76, 553–571 (1997).

    Article  Google Scholar 

  28. S. V. Bobylev and I. A. Ovid’ko, “Accommodation of grain-boundary sliding and increase in fracture toughness in deformed nanocrystalline materials,” Mater. Phys. Mech., 29, 43–70 (2016).

    Google Scholar 

  29. T. Shimokawa, A. Nakatani, and H. Kitagawa, “Grain-size dependence of the relationship between intergranular and intragranular deformation of nanocrystalline Al by molecular dynamics simulations,” Phys. Rev. B, 71, 224110–224118 (2005).

    Article  Google Scholar 

  30. S. A. Firstov, T. G. Rogul, V. L. Svechnikov, et al., “Structure, mechanical properties, and nanohardness of polycrystalline chromium and molybdenum coatings produced by magnetron sputtering,” Metallofiz. Noveish. Tekhnol., 25, No. 9, 1153–1164 (2003).

    Google Scholar 

  31. S. A. Firstov, T. G. Rogul, V. T. Marushko, et al., “Structure and microhardness of polycrystalline chromium produced by magnetron sputtering,” Vopr. Materialoved., No. 1 (33), 201–205 (2003).

  32. S. A. Firstov and Yu. F. Lugovskoi, “Effect of the microstructure on the strength of composite materials under cyclic and static loads,” Élektron. Microsc. Prochn. Mater., No. 15, 83–88 (2008).

  33. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskii, et al., Strain Hardening and Destruction of Polycrystalline Metals [in Russian], Naukova Dumka, Kyiv (1987), p. 245.

    Google Scholar 

  34. A. V. Nokhrin, V. N. Chuvildeev, V. I. Kopylov, et al., Mechanical Properties of Nano- and Microcrystalline Metals [in Russian], Nizhniy Novgorod (2007), p. 46.

  35. S. A. Firstov and T. G. Rogul, “Theoretical strength and theoretical hardness,” Deform. Razrush. Mater., No. 5, 1–7 (2011).

  36. N. Wang, Z. Wang, K. T. Aust, et al., “Effect of grain size of the mechanical properties of nanocrystalline materials,” Acta Metall. Mater., 43, 519–524 (1995).

    Article  Google Scholar 

  37. D. M. Marsh, “Plastic flaw in glass,” Proc. R. Soc., No. A279, 420–424 (1964).

  38. S. A. Firstov, V. Yu. Kulikovskii, T. G. Rogul, et al., “Mechanical properties of nanocrystalline chromium films with small oxygen additions,” Nanocryst. Materialoved., No. 4, 31–41 (2011).

  39. A. A. Fedorov, M. Yu. Gutkin, and I. A. Ovid’ko, “Triple junction diffusion and plastic flow in finegrained materials,” Scr. Mater., 47, No. 1, 51–55 (2002).

  40. E. É. Glikman and R. E. Bruver, “Equilibrium grain-boundary segregation and intercrystallite cold brittleness of solid solutions,” Metallofiz., No. 43, 42–63 (1972).

  41. T. S. Ke, “A grain boundary model and mechanism of viscous intercrystalline slip,” J. Appl. Phys., 20, 274–282 (1949).

    Article  Google Scholar 

  42. A. I. Il’insky, A. E. Barmin, and S. I. Lyabuk, “Structure and strength characteristics of dispersion-hardened composite foils (films) based on iron and nickel,” Funct. Mater., 20, No. 4, 477–484 (2013).

    Article  Google Scholar 

  43. M. Danylenko, V. Gorban, Yu. Podrezov, et al., “Gradient structure formation by severe plastic deformation,” Mater. Sci. Forum, 503–504, 787–792 (2006).

    Article  Google Scholar 

  44. D. R. Lesuer, C. K. Syn, and O. D. Sherby, “Influence of severe plastic deformation on the structure and properties of ultrahigh-carbon steel wire,” in: T. C. Lowe and R. Z. Valiev (eds.), Investigations and Applications of Severe Plastic Deformation, NATO Science Series. 3. High Technology, Kluwer Academic Publishers (2000), Vol. 80, pp. 357–366.

  45. G. T. Hahn, A. Gilbert, and R. I. Jaffee, “The effects of solutes on the brittle–ductile transition in refractory metals,” in: Refractory Metals and Alloys, Interscience Publishers, New York (1963).

  46. S. Firstov, V. Kulikovsky, T. Rogul, et al., “Effect of small concentrations of oxygen and nitrogen on the structure and mechanical properties of sputtered titanium films,” Surf. Coat. Technol., 206, 3580–3585 (2012).

    Article  Google Scholar 

  47. A. V. Sergeeva, V. V. Stolyarov, R. Z. Valiev, et al., “Advanced mechanical properties of pure titanium with ultrafine grained structure,” Scr. Mater., 45, 747–752 (2001).

    Article  Google Scholar 

  48. A. R. Kutsar, M. N. Pavlovskii, and V. V. Komisarov, “Observation of two-wave configuration of blast wave in titanium,” Pis’ma Zh. Exp. Teor. Fiz., 35, No. 3, 91–94 (1982).

    Google Scholar 

  49. K. H. Huang, A Study on the Multicomponent Alloy System Containing Equimolar Elements: Master's Thesis, National Tsing Hua University, Taiwan (1995).

  50. J. W. Yeh, Y. L. Chen, S. J. Lin, et al., “High-entropy alloys––a new era of exploitation,” Mater. Sci. Forum, 560, 1–9 (2007).

    Article  Google Scholar 

  51. Y. Zhang, “Mechanical properties and structures of high entropy alloys and bulk metallic glasses composites,” Mater. Sci. Forum, 654–656, 1058–1061 (2010).

    Article  Google Scholar 

  52. O. N. Senkov, G. B. Wilks, D. B. Miracl, et al., “Refractory high-entropy alloys,” Intermetallics, 18, 1758–1765 (2010).

    Article  Google Scholar 

  53. O. N. Senkov, J. M. Scott, S. V. Sencova, et al., “Microstructure and room properties of a high-entropy TaNbHfZrTi alloy,” J. Alloys Compd., 509, 6043–6048 (2011).

    Article  Google Scholar 

  54. S. A. Firstov, V. F. Gorban, N. A. Krapivska, et al., “Strengthening and mechanical properties of as-cast high-entropy alloys,” Compos. Nanostruct., No. 2, 5–20 (2011).

  55. S. A. Firstov, T. G. Rogul, N. A. Krapivka, et al., “Solid-solution strengthening of high-entropy AlTiVCrNbMo alloy,” Deform. Razrush. Mater., No. 2, 9–16 (2013).

  56. S. A. Firstov, T. G. Rogul, N. A. Krapivka, et al., “Structural features and solid-solution strengthening of high-entropy CrMnFeCoNi alloy,” Powder Metall. Met. Ceram., 55, No. 3–4, 225–235 (2016).

    Article  Google Scholar 

  57. R. L. Fleischer, “Substitutional solution hardening,” Acta Metall., 11, 203–209 (1963).

    Article  Google Scholar 

  58. P. K. Huang, J. W. Yeh, T. T. Shum, et al., “Multiprincipal-element alloys improved oxidation and wear resistance for thermal spray coating,” Adv. Eng. Mater., 6, 74–78 (2004).

    Article  Google Scholar 

  59. W. H. Liu, Y. Wu, J. Y. He, et al., “Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy,” Scr. Mater., 68, 526–529 (2013).

    Article  Google Scholar 

  60. D. Wu, J. Zhang, J. C. Huang, et al., “Grain-boundary strengthening in nanocrystalline chromium and the Hall–Petch coefficient of body-centered cubic metals,” Scr. Mater., 68, 118–121 (2013).

    Article  Google Scholar 

  61. Z. Wu, Temperature and Alloying Effects on the Mechanical Properties of Equiatomic FCC Solid Solution Alloys: PhD Dissertation, University of Tennessee, USA (2014), p. 125: http://trace.tennessee.edu/utk_graddiss/2884.

  62. Electronic resource: www.webelements.com .

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Rogul.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 57, Nos. 3–4 (520), pp. 43–61, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firstov, S.A., Rogul, T.G. & Shut, O.A. Hardening in the Transition to Nanocrystalline State in Pure Metals and Solid Solutions (Ultimate Hardening). Powder Metall Met Ceram 57, 161–174 (2018). https://doi.org/10.1007/s11106-018-9964-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-018-9964-2

Keywords

Navigation