Skip to main content

Advertisement

Log in

High-Velocity Air Plasma Spraying of (Ti, Cr)C–32 wt.% Ni Clad Powder

  • PROTECTIVE AND FUNCTIONAL POWDER COATINGS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The influence of air plasma spraying (parameters such as plasma gun power, spraying distance, plasma gas flow, anode diameter) of (Ti, Cr)C–32 wt.% Ni clad powder on the characteristics of resultant coatings (structure, microhardness, porosity, phase composition) is studied. The experimental procedure is designed using the mathematical planning method. The experimental data are processed to derive regression equations, determining the quantitative dependence of average microhardness and stability of microhardness characteristics on spraying process parameters. It is found that plasma gun power and plasma gas flow have the greatest impact on microhardness of the coatings and ΔX/HVav parameter, which characterizes the reproducibility of coating properties. The spraying distance has hardly any influence on the properties studied within the test range (160–220 mm). The hardness of coatings produced from the (Ti, Cr)C–32 wt.% Ni clad powder (12.15–14.58 GPa) is higher than that of the coatings obtained by air plasma spraying of a mechanical mixture of 75 wt.% (Ti, Cr)C + 25 wt.% NiCr (5.3–12.6 GPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. D. Toma, W. Brandtt, and G. Marginean, “Wear and corrosion of thermally sprayed cermet coatings,” Surf. Coat. Technol., 138, 149–158 (2001).

    Article  Google Scholar 

  2. P. Sahoo and R. Raghuraman, “High temperature chromium carbides reinforced metal matrix composite coatings for turbomachinery application,” in: Proc. Thermal Spray Conf. (TS’93), DVS-Berichte, Aachen, Germany (1993), pp. 296–300.

  3. J. Takeuchi and A. Nakahira, “Cr3C2–NiCr cermet coatings using some HVOF, APS and UPS process,” Proc. Thermal Spray Conf. (TS’93), DVS-Berichte, Aachen, Germany (1993), pp. 11–14.

  4. N. Espallargas, J. Berget, J. M. Guilemany, et al., “Cr3C2–NiCr and WC–Ni spray coatings as alternatives to hard chromium for erosion–corrosion resistance,” Surf. Coat. Technol., 202, 1405–1417 (2008).

    Article  Google Scholar 

  5. J. Beczkowiak, J. Fisher, and Y. Schwier, “Cermet materials for HVOF processes,” in: Proc. Thermal Spray Conf. (TS’93), DVS-Berichte, Aachen, Germany (1993), pp. 32–36.

  6. H. Keller, E. Pross, and G. Schwier, “Influence of the powder type on the structure and the properties of chromium carbide–nickel chromium,” in: H. C. Starck (ed.), Specialist for Specialties (2000), L11, p. 8.

  7. Powder Solutions Catalog, Praxair Surface Technologies (2000), p. 17.

  8. Thermal Spray Materials Guide, Sulzer Metco, USA (2011), p. 52.

  9. E. Lugscheider, P. Remer, C. Herbst, et al., “NiCr–Cr3C2 and NiCr–TiC high wear resistant coatings for protective applications in steam turbines,” in: Proc. Thermal Spray Conf. (TS’95), DVS-Berichte, Aachen, Germany (1995), pp. 235–240.

  10. V. N. Shukla, V. K. Tewari, and R. Jayagantthan, “Comparison of tribological behavior of Cr3C2/NiCr coatings deposited by different thermal spray techniques,” in: Proc. ITSC'2011, DVS-Berichte, Gamburg, Germany (2011).

  11. R. Kieffer and F. Benezovsky, Hardmetals [in German], Springer-Verlag, Vienna (1963).

    Google Scholar 

  12. I. N. Gorbatov, V. M. Shkiro, A. E. Terentiev, et al., “Studying the properties of thermal spray coatings from nickel–titanium and chromium carbide powders,” Fiz. Khim. Obrab. Mater., No. 4, 102–106 (1991).

  13. R. F. Voitovich and E. A. Pugach, “High-temperature oxidation characteristics of the carbides of the group VI transition metals,” Powder Metall. Met. Ceram., 12, No. 4, 314–318 (1973).

    Google Scholar 

  14. R. F. Voitovich and E. A. Pugach, Oxidation of Refractory Compounds [in Russian], Naukova Dumka, Kyiv (1968), p. 84.

    Google Scholar 

  15. S. S. Kiparisov, Yu. V. Levinskii, and A. P. Petrov, Titanium Carbide: Production, Properties, Application [in Russian], Metallurgiya, Moscow (1987), p. 218.

    Google Scholar 

  16. V. B. Raitses, V. M. Litvin, V. P. Rutberg, et al., “Wear-resistant plasma coatings based on a double carbide of titanium and chromium,” Powder Metall. Met. Ceram., 25, No. 10, 827–828 (1986).

    Article  Google Scholar 

  17. Yu. S. Borisov, Powders for Thermal Spraying of Coatings [in Russian], Znanie, Kyiv (1984), p. 15.

    Google Scholar 

  18. I. N. Gorbatov, N. S. Il’chenko, A. E. Terentiev, et al., “Effect from cladding of double titanium–chromium carbide on properties of plasma spayed coatings,” Fiz. Khim. Obrab. Mater., No. 3, 81–85 (1991).

  19. A. Ya. Kulik, Yu. S. Borisov, A. S. Mnukhin, and M. D. Nikitin, Thermal Spraying of Composite Coatings [in Russian], Mashinostroenie, Leningrad (1985), p. 199.

    Google Scholar 

  20. I. N. Gorbatov, A. D. Panasyuk, L. K. Shvedova, et al., “Thermal spray coatings from titanium–chromium carbide composite powders,” Prot. Coat. Met., Issue 25, 22–25 (1991).

    Google Scholar 

  21. A. L. Borisova and A. I. Chernets, “Phase and structural transformations in powders of pure and clad double titanium–chromium carbide in a plasma jet,” Probl. SEM, No. 3, 63–72 (1993).

  22. Yu. Borisov, M. Kolomytsev, and A. Borisova, “Tungsten carbide–cobalt coatings produced by supersonic air–gas plasma spraying,” in: Proc. 14th Int. Plansee Seminar, Reutte, Austria (1997), Vol. 3, pp. 330–341.

  23. Yu. S. Borisov and S. V. Petrov, “Use of supersonic jets in thermal spraying process,” Avtomat. Svarka, No. 1, 24–34 (1993).

  24. A. M. Tamrazov, Planning and Analysis of Regression Experiments in Engineering Studies [in Russian], Naukova Dumka, Kyiv (1987), p. 176.

    Google Scholar 

  25. Yu. S. Borisov, A. L. Borisova, M. V. Kolomytsev, and O. P. Masyuchok, “Supersonic air fuel thermal spraying of cermet coatings in the titanium–chromium carbide–nichrome system,” Avtomat. Svarka, No. 2, 21–27 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Borisov.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 56, Nos. 5–6 (515), pp. 87–100, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, Y.S., Borisova, A.L., Kolomytsev, M.V. et al. High-Velocity Air Plasma Spraying of (Ti, Cr)C–32 wt.% Ni Clad Powder. Powder Metall Met Ceram 56, 305–315 (2017). https://doi.org/10.1007/s11106-017-9898-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-017-9898-0

Keywords

Navigation