Skip to main content
Log in

Physicochemical Features in the Nonisothermal Synthesis of Nanostructured SiC from Hydrothermally Carbonized Rice Husk. I. Nonisothermal Synthesis

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Processing of rice husk into SiC is the most efficient recycling method since it allows both of its constituents to be used: carbon and amorphous silica. Silicon carbide powder is synthesized from hydrothermally carbonized rice husk by nonisothermal heating at a rate of 3–10 °C/min to 1600°C in argon gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. F. Houston, Rice: Chemistry and Technology, Am. Soc. Cereal. Chemists, St. Paul, Minnesota (1972), Chap. 12, p. 301.

  2. S. Yoshida, Y. Ohnishi, and K. Kitaichi, “The chemical forms, mobility, and deposition of silicon in rice plant,” Soil Sci. Plant Nutrition, 8, No. 3, 107–113 (1962).

    Google Scholar 

  3. M. A. Hamad, “Combustion of rice hulls in a static bed,” in: Energy in Agriculture, Vol. 1, 311–315 (1981–1982).

  4. S. B. Hanna, L. M. Farag, and N. A. L. Mansour, “Pyrolysis and combustion of treated and untreated rice hulls,” Thermochem. Acta, 81, 77–86 (1984).

    Article  Google Scholar 

  5. M. Patel, A. Karera, and P. Prasanna, “Effect of thermal and chemical treatment on carbon and silica contents in rice husk,” J. Mater. Sci., 22, 2457–2464 (1987).

    Article  Google Scholar 

  6. Y. Nakata, M. Suzuki, T. Okutani, et al., “Preparation and properties of SiO2 from rice hulls,” J. Ceram. Soc. Jpn., 97, 842–852 (1989).

    Article  Google Scholar 

  7. C. Real, M. Alcala, and J. M. Criado, “Preparation of silica from rice husks,” J. Am. Ceram. Soc., 79, No. 8, 2012–2016 (1996).

    Article  Google Scholar 

  8. T. H. Liou, “Preparation and characterization of nanostructured silica from rice husk,” J. Mat. Sci. Eng. A, 364, 313–323 (2004).

    Article  Google Scholar 

  9. J. I. Martin, The Desilification of Rice Husk and a Study of the Products Obtained: Master Thesis, Lousiana State University, Lousiana, USA (1938), p. 57.

    Google Scholar 

  10. V. P. Della, I. Kühn, and D. Hotza, “Rice husk ash as an alternate source for active silica production,” Mater. Lett., 57, 818–821 (2002).

    Article  Google Scholar 

  11. Y. Shinohara and N. Kohyama, “Quantitative analysis of tridymite and cristobalite crystallized in rice husk ash by heating,” Ind. Health, 42, 277–285 (2004).

    Article  Google Scholar 

  12. E. Natarajan, A. Nordin, and A. N. Rao, “Overview of combustion and gasification of rice husk in fluidized bed reactors,” J. Biomass Bioenergy, 14, Nos. 5–6, 533–546 (1998).

    Article  Google Scholar 

  13. L. Armesto, A. Bahillo, K. Veijonen, et al., “Combustion behavior of rice husk in a bubbling fluidized bed,” J. Biomass Bioenergy, 23, 171–179 (2002).

    Article  Google Scholar 

  14. P. C. Kapur, “Production of reactive bio-silica from the combustion of rice husk in a tube-in-basket (TiB) burner,” J. Powder Technol., 44, 63–67 (1985).

    Article  Google Scholar 

  15. B. M. Jenkins, O. Kitani, and C. W. Hall, “Physical properties of biomass,” in: Biomass Handbook, Gordon & Breach, New York (1989), pp. 860–891.

  16. B. Mahin, Rice Husk Energy Systems, Bioenergy Systems Report, Office of Energy, Agency for International Development, USA (1986), p. 28.

  17. R. Jauberthie, F. Rendell, S. Tamba, et al., “Origin of the pozzolanic effect of rice husks,” J. Construct. Building Mater., 14, 419–423 (2000).

    Article  Google Scholar 

  18. R. H. McDonald, Silica in Nova Scotia, Information Circular ME 14, 2nd ed., Nova Scotia Department of Natural Resources (1991).

  19. D. K. Stephens, C. W. Wellen, J. B. Smith, et al., Precipitated Silicas, Silica Gels with and Free of Deposited Carbon from Caustic Biomass Ash Solutions and Processes, United States Patent 6638354, publ. October 28 (2003).

  20. R. S. Rieber, W. A. Mallow, and J. R. Conner, Production of Soluble Silicates from Biogenic Silica, United States Patent 6524543, publ. February 25 (2003).

  21. Y. Hsieh, Y. Du, F. Jin, et al., “Alkaline pretreatment of rice hulls for hydrothermal production of acetic acid,” J. Chem. Eng. Res. Des., 87, 13–18 (2009).

    Article  Google Scholar 

  22. I. B. Cutler, A Production of Silicon Carbide from Rice Hulls, United States Patent 3754076, publ. August 21 (1973).

  23. L. R. Vishnyakov and S. F. Korablev, “Carbon and carbon composites produced by hydrothermal synthesis (Overview),” Kompoz. Nanostrukt., No. 1, 2–12 (2011).

  24. N. S. Kas’ko and V. P. Kandaurov, “Studying intermolecular interaction of cellulose nitrates with nucleophile reagents,” Khim. Rast. Syr’ya., No. 1, 34–38 (1997).

  25. T. P. Shcherbakova, N. E. Kotel’nikova, and Yu. V. Bykhovtsova, “Comparative study of powder and microcrystalline cellulose of various natural origins. Supermolecular structure and chemical composition of powder samples,” Khim. Rast. Syr’ya., No. 2, 5–14 (2012).

  26. K. Sujrote and P. Leangsuwan, “Silicon carbide formation from pretreated rice husks,” J. Mater. Sci., 38, 4739–4744 (2003).

    Article  Google Scholar 

  27. S. N. Shamin, V. R. Galakhov, V. I. Aksenova, et al., “X-ray and infrared spectroscopy of layers deposited by co-sputtering of spaced SiO2 and Si sources,” Fiz. Tekh. Polyprov., 44, Issue 4, 550–555 (2010).

    Google Scholar 

  28. D. M. Wolfe, B. J. Hinds, F. Wang, et al., “Thermochemical stability of silicon–oxygen–carbon alloy thin films: a model system for chemical and structural relaxation at SiC–SiO2 interfaces,” J. Vac. Sci. Technol. A, 17, No. 4, 2170–2177 (1999).

    Article  Google Scholar 

  29. V. N. Bykov, V. G. Korinevskii, V. E. Eremyashev, et al., “Water in ‘chancharite’ glasses: infrared spectroscopy,” Ural. Mineralog. Sbor., Issue 6, 134–142 (1996).

  30. H. Preiss, L. M. Berger, and M. Braun, “Formation of black glasses and silicon carbide from binary carbonaceous/silica hydrogels,” Carbon, 33, No. 12, 1739–1746 (1995).

  31. J. L. Nieto, “Infrared determination of quartz, kaolin, corundum, silicon carbide, and orthoclase in respirable dust from grinding wheels,” Analyst, 103, 128–133 (1978).

    Article  Google Scholar 

  32. R. G. Zhbankov, A. A. Konkin, and S. G. Bychkova, “Infrared spectroscopy for studying the structure and chemical transformations of natural cellulose during heat treatment,” Khim. Volokna, No. 4, 51–53 (1976).

  33. V. E. Eremyashev, Water Behavior in Model and Natural Aluminosilicate Glasses According to Oscillation Spectroscopy [in Russian], Author’s Abstract of ScD Thesis, Chelyabinsk (2008), p. 47.

  34. D. K. Basa and F. W. Smith, “Annealing and crystallization processes in a hydrogenated amorphous SiC alloy film,” Thin Sol. Films, 192, Issue 1, 121–133 (1990).

    Article  Google Scholar 

  35. I. Pastorova, R. E. Botto, P. W. Arisz, et al., “Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study,” Carbohydr. Res., 262, No. 1, 27–47 (1994).

    Article  Google Scholar 

  36. D. Fengel, “Structural changes of cellulose and their effects on the OH/CH2 valency vibration range in FTIR spectra,” in: Cellulose and Cellulose Derivatives: Physico-chemical Aspects and Industrial Applications “Cellucon ’93, Lund (1993), 75–84.

  37. A. L. Smith and D. R. Anderson, “Vibrational spectra of Me2SiCl2, Me3SiCl, Me3SiOSiMe3, (Me2SiO)3, (Me2SiO)4, (Me2SiO)x and their deuterated analogs,” Appl. Spectrosc., 38, 822–834 (1984).

    Article  Google Scholar 

  38. M. Falk and S. Karunanithy, “Determination of SiO2 in SiC whiskers by infrared absorption spectroscopy,” Mater. Sci. Eng. A, 114, 209–221 (1989).

    Article  Google Scholar 

  39. G. Lucovsky, J. Yang, S. S. Chao, et al., “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon–hydrogen alloy films,” Phys. Rev. B (Condens. Matter), 28, Issue 6, 3225–3233 (1983).

  40. www.ich.dvo.ru/disser/docs/yarusova.pdf.

  41. S. N. Lakiza and Yu. P. Dyban, “Preparation of silicon carbide from rice husk,” Powder Metall. Met. Ceram., 21, No. 2, 117–121 (1982).

    Google Scholar 

  42. N. K. Sharma, W. S. Williams, and A. Zangvil, “Formation and structure of silicon carbide whiskers from rice hulls,” J. Am. Ceram. Soc., 67, No. 11, 715–720 (1984).

    Article  Google Scholar 

  43. R. V. Krishnarao, M. M. Godkhindi, M. Chakraborty, et al., “Formation of SiC whiskers from compacts of raw rice husks,” J. Mater. Sci., 29, 2741–2744 (1994).

    Article  Google Scholar 

  44. B. B. Nayak, B. C. Mohanty, and S. K. Singh, “Synthesis of silicon carbide from rice husk in a dc arc plasma reactor,” J. Am. Ceram. Soc., 79, No. 5, 1197–1200 (1996).

    Article  Google Scholar 

  45. K. M. Knowles and M. V. Ravichandrdan, “Structural analysis of inclusions in β-silicon carbide whiskers grown from rice hulls,” J. Am. Ceram. Soc., 80, No. 5, 1165–1173 (1997).

    Article  Google Scholar 

  46. E. P. Gorzkowski, S. B. Qadri, B. B. Rath, et al., “Formation of nanodimensional 3C–SiC structures from rice husks,” J. Electron. Mater., 42, No. 5, 799–804 (2013).

    Article  Google Scholar 

  47. M. Sarangi, B. Mallick, S. C. Mishra, et al., “High-vacuum synthesis of SiC from rice husk: a novel method,” J. Phys. D: Appl. Phys., 46, No. 34, 345306 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Korablev.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 54, Nos. 1–2 (501), pp. 130–140, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korablev, S.F., Korablev, D.S. Physicochemical Features in the Nonisothermal Synthesis of Nanostructured SiC from Hydrothermally Carbonized Rice Husk. I. Nonisothermal Synthesis. Powder Metall Met Ceram 54, 106–114 (2015). https://doi.org/10.1007/s11106-015-9686-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-015-9686-7

Keywords

Navigation