Skip to main content
Log in

Field assisted sintering of nanocrystalline titanium nitride powder

  • Nanostructured Materials
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The effect of field assisted sintering (FAS) on the compaction of TiN ceramics is examined using a nanosized TiN powder. Microstructural evolution at different stages of FAS is evaluated using electron microscopy. Coarse spherical particles (1–5 μm) are found at 700°C. These particles apparently result from excessive heat release on interparticle contacts when an electrical current passes through agglomerates at certain stages. The specific surface area and pore size distribution in sintered samples are examined with static volumetric absorption. The compaction and microstructural evolution are discussed in terms of electric field effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nanocrystalline materials,” Progr. Mat. Sci., 51, 427–556 (2006).

    Article  CAS  Google Scholar 

  2. V. V. Skorokhod, I. V. Uvarova, and A. V. Ragulya, Physicochemical Kinetics in Nanostructured Systems [in Ukrainian], Akademperiodika, Kiev (2001), p. 180.

    Google Scholar 

  3. V. Viswanathan, T. Laha, K. Balani, et al., “Challenges and advances in nanocomposite processing techniques,” Mater. Sci. Eng. R, 54, 121–285 (2006).

    Article  Google Scholar 

  4. A. V. Ragulya, Science of Controlled Nonisothermal Synthesis and Sintering of Nanostructured Materials [in Russian], Author’s Abstract of ScD Thesis, Inst. Probl. Materialoved. NAN Ukrainy, Kiev (2002).

  5. J. R. Groza and A. Zavaliangos, “Sintering activation by external electrical field,” Mater. Sci. Eng. A, 287, 171–177 (2000).

    Article  Google Scholar 

  6. P. Angerer, L. G. Yu, K. A. Khorb, and G. Krumpel, “Spark-plasma sintering (SPS) of nanostructured and submicron titanium oxide powders,” Mater. Sci. Eng. A, 381, 16–19 (2004).

    Article  Google Scholar 

  7. R. Orru, R. Licheri, A. M. Locci, et al., “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng. R, 63, 127–287 (2009).

    Article  Google Scholar 

  8. J. R. Groza, M. Garcia, and J. A. Schneider, “Surface effects in field-assisted sintering,” J. Mater. Res., 16, No. 1, 286–292 (2001).

    Article  CAS  Google Scholar 

  9. A. V. Ragulya and V. V. Skorokhod, Consolidated Nanostructured Materials [in Russian], Naukova Dumka, Kiev (2007), p. 374.

    Google Scholar 

  10. J. H. Won, K. H. Kim, J. H. Chae, and K. B. Shim, “Sintering of attrition-milled TiN powders using a spark plasma sintering technique,” J. Ceram. Proc. Res., 3, No. 3, 166–170 (2002).

    Google Scholar 

  11. J. R. Groza, J. D. Curtis, and M. Kramer, “Field-assisted sintering of nanocrystalline titanium nitride,” J. Am. Ceram. Soc., 83, No. 5, 1281–283 (2000).

    Article  CAS  Google Scholar 

  12. S. Kawano, J. Takahashi, and S. Shimada, “Spark plasma sintering of nanosized TiN prepared from TiO2 by controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 solution,” J. Am. Ceram. Soc., 86, No. 9, 1609–1611 (2003).

    Article  CAS  Google Scholar 

  13. O. B. Zgalat-Lozinskii, Structurization and Properties of Nanocomposites Based on Refractory Titanium, Aluminum, and Silicon Nitrides under Sintering at a Controlled Densification Rate [in Ukrainian], Inst. Probl. Materialoved. NAN Ukrainy, Kiev (2002).

    Google Scholar 

  14. ASTM Diffraction Data Card File, Joint Committee for Powder Diffraction Standards, Philadelphia (1977).

  15. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area, and Porosity, 2nd ed., Academic Press, London (1982).

    Google Scholar 

  16. N. V. Kel’tsev, Bases of Adsorption Technique, Khimiya, Moscow (1984), p. 592.

    Google Scholar 

  17. T. G. Plachenov and S. D. Kolosentsev, Porometry, Khimiya, Leningrad (1988), p. 176.

    Google Scholar 

  18. S. I. Alyamovskii, Yu. G. Zainulin, and G. P. Shveikin, Oxycarbides and Oxynitrides of IVA and VA Subgroup Metals [in Russian], Nauka, Moscow (1981), p. 144.

    Google Scholar 

  19. J. R. Groza, “Field assisted sintering,” in: ASM Handbook, Vol. 7, Powder Metal Technologies and Applications, ASM International (1998), pp. 583–589.

  20. V. Y. Kodash, J. R. Groza, K. C. Cho, et al., “Field-assisted sintering of Ni nanopowders,” Mater. Sci. Eng. A, 385, 367–371 (2004).

    Google Scholar 

  21. M. Omori, “Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS),” Mater. Sci. Eng. A, 287, 183–188 (2000).

    Article  Google Scholar 

  22. R. Chaim, “Densification mechanisms in spark plasma sintering of nanocrystalline ceramics,” Mater. Sci. Eng. A, 443, 25–32 (2007).

    Article  Google Scholar 

  23. K. Vanmeensel, A. Laptev, J. Hennicke, et al., “Modeling of the temperature distribution during field assisted sintering,” Acta Mater., 53, 4379–4388 (2005).

    Article  CAS  Google Scholar 

  24. D. M. Hulbert, A. Anders, D. V. Dudina, et al., “The absence of plasma in spark plasma sintering,” J. Appl. Phys., 104, 33305-1–33305-7 (2008).

    Article  Google Scholar 

  25. A. I. Raichenko, Fundamentals of Powder Sintering with Electric Current [in Russian], Metallurgiya, Moscow (1987), p. 128.

    Google Scholar 

  26. X. Song, X. Liu, and J. Zhang, “Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering,” J. Am. Ceram. Soc., 89, No. 2, 494–500 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledges

The authors are grateful for CRDF financial support (Grant UE2-2434-KV-02). We also thank V. V. Garbuz for the chemical analysis, N. V. Dubovitska and A. V. Samelyuk for the electron microscopy, and A. I. Bykov for the fruitful scientific discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kolesnichenko.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 50, No. 3–4 (478), pp. 44–56, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesnichenko, V.G., Popov, V.P., Zgalat-Lozinskii, O.B. et al. Field assisted sintering of nanocrystalline titanium nitride powder. Powder Metall Met Ceram 50, 157 (2011). https://doi.org/10.1007/s11106-011-9313-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11106-011-9313-1

Keywords

Navigation