Skip to main content

Advertisement

Log in

Mechanical properties of Al–Cu–Fe alloys sintered at high pressure

  • Sintered Metals and Alloys
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The structure and mechanical behavior of bulk Al–Cu–Fe materials sintered at high hydrostatic pressure are studied at room temperature. Quasicrystalline Al63Cu25Fe12 and Al62.7Cu25Fe12Sc0.3 powders and Al66Cu18Fe8Cr8, powder, which is the quasicrystal approximant, are sintered at high pressure. The powders are obtained by high-pressure water atomization. At an optimal hot compaction pressure of 4.5 GPa, the porosity of the compact materials is lower than 2%. Sintering is conducted at 700°C. The stress-strain curves of quasicrystals and their approximants that are brittle in standard test conditions are obtained using indentation method. It is shown that the crystalline approximants of quasicrystals are much closer in their mechanical behavior to quasicrystals than to crystalline solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Dubois, Introduction to Quasicrystals, Springer Verlag, Berlin (1998).

    Google Scholar 

  2. J.-M. Dubois, “New prospects from potential applications of quasicrystalline materials,” Mat. Sci. Eng., 294–296, 4–9 (2000).

    Google Scholar 

  3. M. J. Daniels, D. King, B. Phillips, et al., “Nature of the as-deposited state of AlCuFeCr PVD coatings,” Thin Sol. Films, 440, 87–93 (2003).

    Article  CAS  ADS  Google Scholar 

  4. Ch. Dong, “The concept of the approximants of quasicrystals,” Scr. Met. Mat., 33, No. 2, 239–243 (1995).

    Article  CAS  Google Scholar 

  5. J.-M. Dubois, A. Proner, B. Bucaille, et al., “Quasicrystalline coatings with reduced adhesion for cookware,” Ann. Chim. Fr., 19, 3–25 (1994).

    Google Scholar 

  6. L. I. Avdeeva and A. L. Borisova, “Quasicrystalline alloys as a new promising material for protective coatings,” Fiz. Khim. Tverd. Tela, 3, No. 3, 454–465 (2002).

    Google Scholar 

  7. J.-M. Dubois and A. Piranelli, Aluminum Alloys, Substrates Coated with These Alloys, and Their Applications, US Patent 5,652,877, Publ. (1997).

  8. S. Takeuchi, “Bulk mechanical properties of quasicrystals,” in: J.-M. Dubois, P. A. Tiel, A. P. Tsai, et al. (eds.), Proc. MRS Symp. Quasicrystals, Vol. 553, 283–294 (1999).

  9. Yu. V. Milman, D. V. Lotsko, and A. M. Bilous, “Quasicrystalline materials. Structure and mechanical properties,” in: M.-I. Baraton and I. Uvarova (eds.), Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology, Kluwer Academic Publ., Netherlands (2001), pp. 289–296.

    Google Scholar 

  10. S. N. Dub, Yu. V. Milman, D. V. Lotsko, et al., “The anomalous behavior of Al–Cu–Fe quasicrystal during nanoindentation,” J. Mater. Sci. Let., 20, 1043–1045 (2001).

    Article  CAS  Google Scholar 

  11. Yu. V. Milman, D. V. Lotsko, S. N. Dub, et al., “Mechanical properties of quasicrystalline Al–Cu–Fe coatings with submicron-sized grains,” Surf. Coat. Techn., 201, 5937–5943 (2007).

    Article  CAS  Google Scholar 

  12. Yu. V. Milman, “New methods of micromechanical testing of materials by local loading with a rigid indenter,” in: Advanced Materials Science: 21st Century, Int. Sci. Publishing, Cambridge (1998), pp. 638–659.

    Google Scholar 

  13. Yu. V. Milman, B. A. Galanov, and S. I. Chugunova, “Plasticity characteristic obtained through hardness measurement (overview No. 107),” Acta Met. Mat., 41, No. 9, 2523–2532 (1993).

    Article  CAS  Google Scholar 

  14. O. D. Neikov, G. I. Vasil’eva, V. G. Kalinkin, et al., Method of Producing Aluminum Powders and Alloys [in Ukrainian], Ukraine Patent 9505, Bulletin 3, Publ. September 30 (1996).

  15. A. I. Bykov, A. V. Ragulya, and I. I. Timofeeva, “Preparation of highly disperse materials on the basis of refractory nitrides under high pressures,” Ceram. Sci. Techn., 69, No. 7–8, 255–260 (2004).

    CAS  Google Scholar 

  16. Yu. V. Milman, D. V. Lotsko, and O. I. Sirko, “Sc effect of improving mechanical properties in aluminum alloys,” Mat. Sci. Forum, 331–337, 1107–1112 (2000).

    Article  Google Scholar 

  17. Yu. V. Mil’man, D. V. Lotsko, N. A. Efimov, et al., “Effect of scandium alloying in cast Al–Cu–Fe quasicrystals,” in: Proc. Int. Conf. Modern Materials Science: Achievement and Problems [in Russian], (September 26–30, 2005, Kiev), Kiev (2005), pp. 124–125.

  18. C. Dong and J.-M. Dubois, “Quasicrystals and crystalline phases in Al66Cu18Fe10Cr5 alloy,” J. Mat. Sci., 26, 1647–1654 (1991).

    Article  CAS  ADS  Google Scholar 

  19. O. D. Neikov, G. I. Vasilieva, A. V. Sameljuk, et al., “Water atomized aluminum alloy powders,” Mat. Sci. Eng. A, 383, 7–13 (2004).

    Article  Google Scholar 

  20. O. D. Neikov, “Water atomized powder technologies for advanced aluminum alloy production,” in: K. Kosuge and H. Nagai (eds.), Proc. 2000 Powder Metallurgy World Congress, Japan Society of Powder and Powder Metallurgy and Japan Powder Metallurgy Association, Kyoto (2000), pp. 464−467.

    Google Scholar 

  21. I. I. Timofeeva and M. D. Smolin, “Effect of high pressures on the structure and properties of refractory compounds,” in: High-Pressure Physics and Technology [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  22. Y. Amazit, M. Fisher, B. Perrin, et al., “Ultrasonic investigations of large single AlPdMn icosahedral quasicrystals,” in: C. Janot and R. Mosseri (eds.), Proc. 5th Int. Conf. Quasicrystals, World Scientific, Singapore (1996), pp. 584–587.

  23. D. J. Sordelet, M. F. Besser, and I. E. Anderson, “Particle size effects on chemistry and structure of Al–Cu– Fe quasicrystalline coatings,” Thermal Spray Techn., 5, No 2, 161–174 (1996).

    Article  CAS  ADS  Google Scholar 

  24. M. L. Kharakterova and T. V. Dobatkina, “Al–Cu–Sc vertical sections,” Izv. AN SSSR. Metally, No. 6, 180–182 (1988).

  25. C. Dong and J.-M. Dubois, “Structural study of crystalline approximants of the Al–Cu–Fe–Cr decagonal quasicrystal,” J. Appl. Cryst., 28, 96–104 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Efimov.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 5–6 (473), pp. 39–50, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mil’man, Y.V., Efimov, N.A., Ul’shin, S.V. et al. Mechanical properties of Al–Cu–Fe alloys sintered at high pressure. Powder Metall Met Ceram 49, 280–288 (2010). https://doi.org/10.1007/s11106-010-9234-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9234-4

Keywords

Navigation