Skip to main content
Log in

Rapid mechanically activated solid-state synthesis of nanocrystalline α-Al2O3 using Fe2O3 and Al

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

In this research, we demonstrate rapid mechanochemical synthesis of nanocrystalline α-alumina (α-Al2O3) from a starting mixture of hematite (Fe2O3) and aluminum (Al). The formation of α-Al2O3 nanocrystallites occurs during the solid-state reaction and through the reduction treatment. Also in this paper, effects of milling time on the particle size and lattice strain of nanocrystalline α-Al2O3 are investigated. The results indicate that complete reduction is reached only after 2 h of milling in a planetary mill and the crystallite size of obtained α-Al2O3 is in general about 12 nm. Also, it is found that increasing the milling time can effectively decrease the nanocrystalline size and increase the lattice strain of α-Al2O3. Finally, the experimental results show appropriate homogeneity and dispersion of related nanocrystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bose and S. K. Saha, Chem. Mater., 2003, 15, 4464-4469.

    Article  CAS  Google Scholar 

  2. M. Bodaghi, A. R. Mirhabibi, H. Zolfonun, et al., Mater. Res. Innov., 2008, 12, 157–161.

    Article  CAS  Google Scholar 

  3. H. Eslami, M. Solati-Hashjin, and M. Tahriri, J. Ceram. Process. Res., 2008, 9, 224–229.

    Google Scholar 

  4. M. Bodaghi, A. R. Mirhabibi, H. Zolfonun, et al., Phase Transit., 2008, 81, 571–580.

    Article  CAS  Google Scholar 

  5. K. L. Eckert, M. Mathey, J. Mayer, et al., Biomaterials, 2000, 21, 63–69.

    Article  CAS  PubMed  Google Scholar 

  6. P. A. Zieliñski, R. Schulz, S. Kaliaguine, et al., J. Mater. Res., 1993, 8, 2985–2992.

    Article  ADS  Google Scholar 

  7. L.L. Hench, J. Am. Ceram. Soc., 1991, 74, 1487-1510.

    Article  CAS  Google Scholar 

  8. N. Travitzky, P. Kumar, K. H. Sandhage, et al., Mater. Sci. Eng., 2003, 344A, 245–252.

    Google Scholar 

  9. P. Ganguly and W. J. Poole: Mater. Sci. Eng., 2003, 352A, 46–54.

    Google Scholar 

  10. E. Martínez Flores, J. Negrete, and G. Torres Villaseñor, Mater. Des., 2003, 24, 281–286.

    Google Scholar 

  11. C. Suryanarayana, Prog. Mater. Sci., 2001, 46, 1-184.

    Article  CAS  Google Scholar 

  12. M. Z. Hu and X. Feng, Encyclop. Nanosci. Nanotech., 2004, 1, 687-726.

    Google Scholar 

  13. J. Li, Y. Pan, C. Xiang, et al., Ceram. Int., 2006, 32, 587-591.

    Article  CAS  Google Scholar 

  14. B. Siebert, C. Funke, R. Vaβen, et al., J. Matter. Process. Tech., 1999, 92–93, 195–202.

    Google Scholar 

  15. K. Varatharajan, S. Dash, A. Arunkumar, et al., Mater. Res. Bull., 2003, 38, 577–583.

    Article  CAS  Google Scholar 

  16. J. Xue, D. Wan, S. E. Lee, J et al., J. Am. Ceram. Soc., 1999, 82, 1687-1692.

    Article  CAS  Google Scholar 

  17. B. D. Stojanovic, A. Z. Simoes, C. O. Paiva-Santos, et al., J. Euro. Ceram. Soc., 2005, 25, 1985–1989.

    Article  CAS  Google Scholar 

  18. T. Peng, X. Liu, K. Dai, et al., Mater. Res. Bull., 2006, 41, 1638–1645.

    Article  CAS  Google Scholar 

  19. A. K. Giri, Adv. Mater., 1997, 9, 163–166.

    Article  CAS  Google Scholar 

  20. P. Matteazzi, G. Le Caer, J. Am. Ceram. Soc., 1992, 75, 2749–2755.

    Article  CAS  Google Scholar 

  21. J. Ding, T. Ssuzuki, and P. G. McCormick, J. Am. Ceram. Soc., 1996, 79, 2956–2958.

    Article  CAS  Google Scholar 

  22. C. Cuadrado-Labord, L. C. Damonte, and L. Mendoza-Zelis, Mat. Sci. Eng., 2003, 355A, 106–113.

    Google Scholar 

  23. L. Durães, B. F. O. Costa, R. Santos, et al., Mat. Sci. Eng., 2007, 465A, 199–210.

    Google Scholar 

  24. P. Millet and T. Hwang, J. Mater. Sci., 1996, 31, 351-355.

    Article  CAS  ADS  Google Scholar 

  25. P. G. McCormick, Mater. Trans. J. Japan Inst. Metals, 1995, 36, 161–169.

    CAS  Google Scholar 

  26. S. Schicker, D. E. Garcia, J. Bruhn et al., Acta Mater., 1998, 46, 2485–2492.

    Article  CAS  Google Scholar 

  27. W. Zeng, A. A. Rabelo, and R. Tomasi, Key Eng. Mater., 2001, 189–191, 16–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tahriri.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 48, No. 11–12 (470), pp. 30–37, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodaghi, M., Mirhabibi, A. & Tahriri, M. Rapid mechanically activated solid-state synthesis of nanocrystalline α-Al2O3 using Fe2O3 and Al. Powder Metall Met Ceram 48, 634–640 (2009). https://doi.org/10.1007/s11106-010-9180-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9180-1

Keywords

Navigation