Skip to main content

Advertisement

Log in

Thermal stability of amorphous alloys Mg65Cu25Y10, Mg63Ni30Y7 after electrochemical hydrogen absorption

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Thin ribbons of the metallic glass Mg65Cu25Y10 and Mg63Ni30Y7 obtained by melt spinning were saturated with atomic hydrogen during electrochemical decomposition of water. The amount of absorbed hydrogen was as high as 4 mass% for the alloy Mg65Cu25Y10Hx and 1.5 mass% for the alloy Mg63Ni30Y7Hx. As the hydrogen content increases up to 3.6 mass%, the amorphous structure of the copper-containing alloy is transformed to a nanocrystalline structure with formation of magnesium and yttrium hydrides and also the intermetallic Cu2Mg at room temperature. The appearance of crystalline compounds during saturation with hydrogen leads to a decrease in the thermal stability of the amorphous alloy and a shift of the differential scanning calorimetry curves toward lower temperatures. In the presence of nickel, the thermal stability of the amorphous alloy Mg63Ni30Y7Hx increases with hydrogen saturation. After heating up to the crystallization temperature, the compounds Mg2NiH0.3 and YH2 appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gebert, U. Wolff, M. Savyak, et al., “Stability and electrochemical properties of Mg65Cu25Y10 metallic glass,” Mater. Sci. Forum, 377, 9–14 (2001).

    Article  CAS  Google Scholar 

  2. M. Savyak, S. Hirny, H.-D. Bauer, et al., “Electrochemical hydrogenation of Mg65Cu25Y10, ” J. Alloys and Comp., 364, 217–228 (2003).

    Google Scholar 

  3. M. P. Savyak, A. Gebert, and M. Uhlemann, “Effect of hydrogen on the amorphous structure of Mg65Cu25Y10 alloy with electrochemical saturation,” Poroshk. Metall., Nos. 9–10, 1–7 (2004).

  4. A. Gebert, U. Wolff, A. John, et al., “Stability of the bulk glass-forming Mg65Cu25Y10 alloy in aqueous electrolytes,” Mater. Sci. Eng., A299, 125–135 (2001).

    CAS  Google Scholar 

  5. A. Gebert, K. Buchholz, A. Leohard, et al., “Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses,” Mater. Sci. Eng., A267, No. 2, 294–300 (1999).

    CAS  Google Scholar 

  6. A. Zaluska, L. Zaluski, and J. O. Strom-Olsen, “Nanocrystalline magnesium for hydrogen storage, ” J. All. Comp., 288, 217–225 (1999).

    Article  CAS  Google Scholar 

  7. J. Eckert, “Massive amorphous metals,” Wissenschaftliche Zeitschrift der Technischen Universität Dresden, 46, No. 3, 86–90 (1997).

    CAS  Google Scholar 

  8. A. Inoue and T. Masumoto, “Mg-based amorphous alloys,” Mater. Sci. Eng., A173, 1 (1993).

    CAS  Google Scholar 

  9. T. Spassov and U. Köster, “Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7,” J. All. Comp., 279, 279–286 (1998).

    Article  CAS  Google Scholar 

  10. T. Spassov, P. Solsona, S. Surinach, and M. D. Baro, “Nanocrystallization in Mg83Ni17−x Yx (x = 0, 7.5) amorphous alloys,” J. All. Comp., 345, 123–129 (2002).

    Article  CAS  Google Scholar 

  11. N. Ismail, M. Uhlemann, A. Gebert, and J. Eckert, “Hydrogenation and its effect on the crystallisation behaviour of Zr55Cu30Al10Ni5 metallic glass,” J. All. Comp., 298, 146 (2000).

    Article  CAS  Google Scholar 

  12. I. G. Konstanchuk, E. Yu. Ivanov, and V. V. Boldyrev, “Reaction with hydrogen of alloys and intermetallics obtained by mechanochemical methods,” Usp. Khim., 67, 7–75 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Nos. 3–4(448), pp. 105–111, March–April, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savyak, M.P. Thermal stability of amorphous alloys Mg65Cu25Y10, Mg63Ni30Y7 after electrochemical hydrogen absorption. Powder Metall Met Ceram 45, 196–201 (2006). https://doi.org/10.1007/s11106-006-0063-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-006-0063-4

Keywords

Navigation