Skip to main content
Log in

Genetic Diversity and Population Structure of Coffee Germplasm Collections in China Revealed by ISSR Markers

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Population genetics analysis is crucial for understanding the degree of linkage disequilibrium in a germplasm collection for association mapping and breeding strategies. Here, we report population structure patterns and genetic differentiation of coffee germplasm collections in China using 19 ISSR markers. A total of 129 unique alleles were detected, with an average of 6.8 alleles per ISSR. The estimated average Nei’s gene diversity (He) index for all tested accessions was 0.49. A clustering pattern correlating with predefined species origin, rather than isolation by distance, was observed for all the tested accessions. C. arabica is highly differentiated from C. liberica and C. canephora, with Fst values of 0.33 and 0.21, respectively. By contrast, C. liberica and C. excelsa Chevalier showed a close genetic association, with the Fst value of 0.04. Significant differentiation was also detected within C. arabica accessions, which were separated in three genetic subgroups supported by pairwise (Fst) index and Nei’s standard genetic distance tests. The Fst outlier test for deviation from expected distribution between Fst and expected heterozygosity identified five putative ISSRs under selection, with two, UBC864 and UBC842, showing signals of positive selection. Our study provides useful information for identifying core collections for genetics studies, breeding programs, and development of future germplasm management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aga E, Bekele E, Bryngelsson T (2005) Inter-simple sequence repeat (ISSR) variation in forest coffee trees (Coffea arabica L.) populations from Ethiopia. Genetica 124:213–221

    Article  CAS  PubMed  Google Scholar 

  • Antao T, Lopes A, Lopes Beja-pereira A, Luikart G (2008) LOSITAN: workbench to detect molecular adaptation based on a FST-outlier method. BMC Bioinformatic 9:1–5

    Article  CAS  Google Scholar 

  • Beaumont M, Nichols R (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond Ser B 263:1619–1626

    Article  Google Scholar 

  • Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaparro A, Cristancho M, Cortina H, Gaitan A (2004) Genetic variability of Coffea arabica L. accessions from Ethiopia evaluated with RAPDs. Genet Resour Crop Evol 51:291–297

    Article  CAS  Google Scholar 

  • Cubry P, Musoli P, Legnaté H, Pot D, de Bellis F, Poncet V, Anthony F, Dufour M, Leroy T (2008) Diversity in coffee assessed with SSR markers: structure of the genus Coffea and perspectives for breeding. Genome 51:50–63

    Article  CAS  PubMed  Google Scholar 

  • Dieringer D, Schlotterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Draghi J, Parsons T, Wagner G, Plotkin J (2010) Mutational robustness can facilitate adaptation. Nature 463:353–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellstrand N (2014) Is gene flow the most important evolutionary force in plants? Am J Bot 101:737–753

    Article  PubMed  Google Scholar 

  • Etienne H, Anthony F, Fernandez S, Lashermes P, Bertrand B (2002) Biotechnological applications for the improvement of coffee (Coffea arabica L.). In Vitro Cell Dev Biol, Plant 38:129–138

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Foll M, Petit R (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501

    Article  Google Scholar 

  • Fortini L, Schubert O (2017) Beyond exposure, sensitivity and adaptive capacity: a response based ecological framework to assess species climate change vulnerability. Climate Change Responses 4(1)

  • Freeland J (2006) Molecular ecology. Genetic analysis of multiple populations. John Wiley & Sons, UK

    Google Scholar 

  • Geleta M, Herrera I, Monzón A, Bryngelsson T (2012) Genetic diversity of Arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers. Sci World J 2012:128–145

    Google Scholar 

  • Gimase J, Thagana W, Kirubi D, Gichuru E, Gichimu B (2014) Genetic characterization of Arabusta coffee hybrids and their parental genotypes using molecular markers. PCBMB 15:31–42

    Google Scholar 

  • Greenbaum G, Templeton AR, Bar-David S (2016) Inference and analysis of population structure using genetic data and network theory. Genetics. 202:1299–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatanaka T, Choi Y, Kusano T, Sano H (1999) Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep 19:106–110

    Article  CAS  PubMed  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    Article  CAS  PubMed  Google Scholar 

  • Hyten D, Song Q, Zhu Y, Choi I, Nelson R, Costa J et al (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci U S A 103:16666–16671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Coffee Council-ICC (2015) Coffee in China. 115th session, Milan, Italy

  • International Trade Centre-ITC (2010) The coffee sector in China: an overview of production, trade and consumption

  • Joshi J, Schmid B, Caldeira M, Dimitrakopoulos P, Good J, Harris R, Hector A, Huss-Danell K, Jumpponen A, Minns A, Mulder C (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544

    Article  Google Scholar 

  • Kremer A, Ronce O, Robledo-Arnuncio J, Guillaume F, Bohrer G, Nathan R et al (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Lashermes P, Combes M, Robert J, Trouslot P, D'Hont A, Anthony F, Charrier A (1999) Molecular characterization and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266

    Article  CAS  PubMed  Google Scholar 

  • Lashermes P, Andrzejewski S, Bertrand B, Combes MC, Dussert S, Graziosi G, Trouslot P, Anthony F (2000) Molecular analysis of introgressive breeding in coffee (Coffea arabica L.). TAG Theor Appl Genet 100:139–146

    Article  CAS  Google Scholar 

  • Leroy T, Henry A, Royer M et al (2000) Genetically modified coffee plants expressing the Bacillus thuringiensiscry1Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389

    Article  CAS  PubMed  Google Scholar 

  • López-Gartner G, Cortina H, Mccouch S, Moncada M (2009) Analysis of genetic structure in a sample of coffee (Coffea arabica L.) using fluorescent SSR markers. Tree Genet Genomes 5:435–446

    Article  Google Scholar 

  • Maluf MP, Silvestrini M, Ruggiero LMDC, Guerreiro Filho O, Colombo CA (2005) Genetic diversity of cultivated Coffea arabica inbred lines assessed by RAPD, AFLP and SSR marker systems. Sci Agric 62:366–373

    Article  CAS  Google Scholar 

  • Maurin O, Davis A, Chester M, Mvungi E, Jaufeerally-Fakim Y, Fay M (2007) Towards a phylogeny for Coffea (Rubiaceae): identifying well-supported lineages based on nuclear and plastid DNA sequences. Ann Bot 100:1565–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer R, Purugganan M (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852

    Article  CAS  PubMed  Google Scholar 

  • Mishra M, Slater K (2012) Recent advances in the genetic transformation of coffee. Biotech Res Int 580857:17

    Google Scholar 

  • Moncada M, Tovar E, Montoya J, González A, Spindel J, McCouch S (2016) A genetic linkage map of coffee (Coffea arabica L.) and QTL for yield, plant height, and bean size. Tree Genet Genomes 12:5

    Article  Google Scholar 

  • Nagaoka T, Ogihara Y (1997) Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94:597–602

    Article  CAS  Google Scholar 

  • Ne’de’lec Y et al (2016) Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167:3

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogutu C, Fang T, Yan L, Wang L, Huang L, Wang X, Ma B, Deng X, Owiti A, Nyende A, Han Y (2016) Characterization and utilization of microsatellites in the Coffea canephora genome to assess genetic association between wild species in Kenya and cultivated coffee. Tree Genet Genomes 12:54

    Article  Google Scholar 

  • Park SDE (2001) The Excel microsatellite toolkit (version 3.1). Animal Genomics Laboratory, University College, Dublin

    Google Scholar 

  • Parter M, Kashtan N, Alon U (2008) Facilitated variation: how evolution learns from past environments to generalize to new environments. PLoS Comput Biol 4:e1000206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauls S, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearl H, Nagai C, Moore P, Steiger D, Osgood R, Ming R (2004) Construction of a genetic map for Arabica coffee. Theor Appl Genet 108:829–835

    Article  CAS  PubMed  Google Scholar 

  • Perrier X, Jacquemoud-Collet J (2006) DARwin Software. Montpellier, France: CIRAD. http://darwin.cirad.fr/darwin

  • Premoli A, Souto C, Allnutt T, Newton A (2001) Effects of population disjunction on isozyme variation in the widespread Pilgerodendron uviferum. Heredity 87:337–343

    Article  CAS  PubMed  Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond L, Plantegenest M, Vialatte A (2013) Migration and dispersal may drive to high genetic variation and significant genetic mixing: the case of two agriculturally important, continental hoverflies (Episyrphus balteatus and Sphaerophoria scripta). Mol Ecol 22:5329–5339

    Article  PubMed  Google Scholar 

  • Rius M, Darling J (2014) How important is intraspecific genetic admixture to the success of colonizing populations. Trends Ecol Evol 29:233–242

    Article  PubMed  Google Scholar 

  • Rosenberg N, Burke T, Elo K, Feldmann M, Freidlin P, Groenen M et al (2001) Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics 159:699–713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott H, Ryan H, Adi F, Lan Z, Rasmus N, Carlos D (2005) Simultaneous inference of selection and population growth from patterns of variation in the human genome. Evolution 102:7882–7887

    Google Scholar 

  • Semon M, Nielsen R, Jones M, McCouch S (2005) The population structure of African cultivated rice Oryza Glaberrima (Steud.): evidence for elevated levels of LD caused by admixture with O. sativa and ecological adaptation. Genetics 169:1639–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setotaw T, Caixeta E, Pena G et al (2010) Breeding potential and genetic diversity of BHíbrido do Timor coffee evaluated by molecular markers. Crop Breed Appl Biotechnol 10:298–304

    Article  CAS  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Sork V (2015) Gene flow and natural selection shape spatial patterns of genes in tree populations: implications for evolutionary processes and applications. Evol Appl 9:291–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Sousa T, Caixeta E, Alkimim E, de Oliveira A, Pereira A, Sakiyama N, de Resende Júnior M, Zambolim L (2017) Population structure and genetic diversity of coffee progenies derived from Catuaí and Híbrido de Timor revealed by genome-wide SNP marker. Tree Genet Genomes 13:124

    Article  Google Scholar 

  • Strasburg J, Scotti-Saintagne C, Scotti I, Lai Z, Rieseberg L (2009) Genomic patterns of adaptive divergence between chromosomally differentiated sunflower species. Mol Biol Evol 26:1341–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley S, McCouch S (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Turner T, Hahn M (2010) Genomic islands of speciation or genomic islands and speciation. Mol Ecol 19:848–850

    Article  PubMed  Google Scholar 

  • Van der Vossen H (1985) Coffee breeding and selection. In: Clifford MN, Wilson RC (eds) Coffee: botany, biochemistry and production of beansand beverages. Croom Helm, London, New York, Sydney, pp 48–97

    Chapter  Google Scholar 

  • Vignuzzi M, Stone J, Arnold J, Cameron C, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439:344–348

    Article  CAS  PubMed  Google Scholar 

  • Wakeley J (2000) The effects of subdivision on the genetic divergence of populations and species. Evolution 54:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Wakeley J, King L, Wilton P (2016) Effects of the population pedigree on genetic signatures of historical demographic events. Proc Natl Acad Sci U S A 113:7994–8001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir BS, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Williamson S, Hernandez R, Fledel-Alon A, Zhu L, Nielsen R, Bustamante C (2005) Simultaneous inference of selection and population growth from patterns of variation in the human genome. Proc Natl Acad Sci U S A 102:7882–7887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yapo A, Louarn J, Montagnon C (2003) Genetic gains for yield after two back-crosses of the interspecific hybrid Libusta (Coffea canephora P. x C. liberica Bull. Ex Hiern) to C. canephora P. Plant Breed 122:288–290

    Article  Google Scholar 

  • Zhang HL, Zhou J, Chen H, Song Z, Peng G, Pereira Z, Silva A, Varzea MV (2013) Arabica coffee production in the Yunnan Province of China. Conference: Proceedings of the 24th International Conference on Coffee Science (ASIC)

Download references

Funding

This project was supported by funds received from Hainan Provincial Natural Science Foundation of China (No.2018CXTD342), Overseas Construction Plan for Science and Education Base, China-Africa Center for Research and Education, Chinese Academy of Sciences (Grant No. SAJC201327), and Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences (No.1630142018001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunping Dong or Yuepeng Han.

Ethics declarations

Data Archiving Statement

Primer sequences of the ISSR markers are provided in Table 1.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Ogutu, C., Huang, L. et al. Genetic Diversity and Population Structure of Coffee Germplasm Collections in China Revealed by ISSR Markers. Plant Mol Biol Rep 37, 204–213 (2019). https://doi.org/10.1007/s11105-019-01148-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-019-01148-3

Keywords

Navigation