Skip to main content
Log in

A Glyphosate Resistance Mechanism in Conyza canadensis Involves Synchronization of EPSPS and ABC-transporter Genes

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Horseweed, [Conyza canadensis (L.) Cronq.], has been the most frequent weed species to develop resistance to glyphosate in various parts of the world, including Greece. In order to investigate the resistance mechanism, susceptible (S) and resistant ®) populations collected from regions across Greece were studied. Real-time PCR was used to determine the expression levels of the key enzyme EPSPS and the four ABC transporter genes M10, M11, M7 and P3. The expression level of those genes was studied at early (1DAT) or late (4DAT) times after glyphosate treatment, applied at normal (720 g a.i. ha−1) and high (5.760 g a.i. ha−1) glyphosate rate. The proposed resistance mechanism was found not to be due to a point mutation at codon 106 of the EPSPS gene that regulates glyphosate metabolism (target-site resistance), but rather involved synchronization of the overexpression of EPSPS and ABC-transporter genes. This synchronization mechanism was based on (1) the time of induction and duration of gene overexpression, and (2) regulation by the initial glyphosate load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baerson SR, Rodriguez DJ, Tran M, Feng Y, Biest NA, Dill GM (2002) Glyphosate-resistant Goosegrass. Identification of a mutation in the target enzyme 5-Enolpyruvylshikimate-3-phosphate synthase. Plant Physiol 129:1265–1275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown SM, Whitwell T (1988) Influence of tillage on horseweed (Conyza canadensis). Weed Technol 2:269–270

    Google Scholar 

  • Busi R, Vila-Aiub MM, Powles SB (2011) Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum. Heredity 106:817–824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chachalis D, Reddy KN (2005) Factors affecting sprouting and glyphosate translocation in rootstocks of Redvine (Brunnichia ovata) and Trumpetcreeper (Campsis radicans). Weed Technol 19:141–147

    Article  CAS  Google Scholar 

  • Chachalis D, Travlos IS (2014) Glyphosate resistant weeds in Southern Europe: current status, control strategies and future challenges. In: Kobayashi D, Watanabe E (eds) Handbook of herbicides: biological activity, classification, and health and environmental implications. Nova, New York, pp 175–191

    Google Scholar 

  • Conte SS, Lloyd AM (2011) Exploring multiple drug and herbicide resistance in plants—spotlight on transporter proteins. Plant Sci 180:196–203

    Article  PubMed  CAS  Google Scholar 

  • Culpepper AS, Grey TL, Vencill WK, Kichler JM, Webster TM, Brown SM, York AC, Davis JW, Hanna WW (2006) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54:620–626

    Article  CAS  Google Scholar 

  • de Carvalho LB, Alves PL, Gonzalez-Torralva F, Cruz-Hipolito HE, Rojano-Delgado AM, De Prado R, Gil-Humanes J, Barro F, de Castro MD (2012) Pool of resistance mechanisms to glyphosate in Digitaria insularis. J Agric Food Chem 60:615–622

    Article  PubMed  CAS  Google Scholar 

  • De Prado JL, Osuna MD, Heredia A, De Prado R (2005) Lolium rigidum, a pool of resistance mechanisms to ACCase inhibitor herbicides. J Agric Food Chem 53:2185–2191

    Article  PubMed  CAS  Google Scholar 

  • Dinelli G, Marotti I, Bonetti A, Minelli M, Catizone P, Barnes J (2006) Physiological and molecular insight on the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq. biotypes. Pestic Biochem Physiol 86:30–41

    Article  CAS  Google Scholar 

  • Dinelli G, Marotti I, Bonetti A, Catizone P, Urbano JM, Barnes J (2008) Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Res 48:257–265

    Article  CAS  Google Scholar 

  • Feng PCC, Tran M, Chiu T, Douglas Sammons R, Heck GR, CaJacob CA (2004) Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Sci 52:498–505

    Article  CAS  Google Scholar 

  • Frelet-Barrand A, Kolukisaoglu HÜ, Plaza S, Rüffer M, Azevedo L, Hörtensteiner S, Marinova K, Weder B, Schulz B, Klein M (2008) Comparative mutant analysis of Arabidopsis ABCC-type ABC transporters: AtMRP2 contributes to detoxification, vacuolar organic anion transport and chlorophyll degradation. Plant Cell Physiol 49:557–569

    Article  PubMed  CAS  Google Scholar 

  • Ge X, d’Avignon DA, Ackerman JJH, Sammons RD (2010) Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Manag Sci 66:345–348

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez-Torralva F, Rojano-Delgado AM, Luque de Castro MD, Mulleder N, De Prado R (2012) Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. J Plant Physiol 169:1673–1679

    Article  PubMed  CAS  Google Scholar 

  • Jóri B, Soós V, Szegő D, Páldi E, Szigeti Z, Rácz I, Lásztity D (2007) Role of transporters in paraquat resistance of horseweed (Conyza canadensis (L.) Cronq.). Pestic Biochem Physiol 88:57–65

    Article  CAS  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arabidopsis Book 9:e0153

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaundun SS, Dale RP, Zelaya IA, Dinelli G, Marotti I, McIndoe E, Cairns A (2011) A novel P106L mutation in EPSPS and an unknown mechanism (s) act additively to confer resistance to glyphosate in a South African Lolium rigidum population. J Agric Food Chem 59:3227–3233

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Martinoia E, Hoffmann-Thoma G, Weissenbock G (2000) A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates. Plant J 21:289–304

    Article  PubMed  CAS  Google Scholar 

  • Koger CH, Reddy KN (2005) Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Sci 53:84–89

    Article  CAS  Google Scholar 

  • Lasat MM, DiTomaso JM, Hart JJ, Kochian LV (1997) Evidence for vacuolar sequestration of paraquat in roots of a paraquatresistant Hordeum glaucum biotype. Physiol Plant 99:255–262

    Article  CAS  Google Scholar 

  • Main CL, Mueller TC, Hayes RM, Wilkerson JB (2004) Response of selected horseweed (Conyza canadensis (L.) Cronq.) populations to glyphosate. J Agric Food Chem 52:879–883

    Article  PubMed  CAS  Google Scholar 

  • Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. BioTechniques 24:954–958, 960, 962

    PubMed  CAS  Google Scholar 

  • Ng CH, Wickneswari R, Salmijah S, Teng YT, Ismail BS (2003) Gene polymorphisms in glyphosate-resistant and -susceptible biotypes of Eleusine indica from Malaysia. Weed Res 43:108–115

    Article  CAS  Google Scholar 

  • Nol N, Tsikou D, Eid M, Livieratos IC, Giannopolitis CN (2012) Shikimate leaf disc assay for early detection of glyphosate resistance in Conyza canadensis and relative transcript levels of EPSPS and ABC transporter genes. Weed Res 52:233–241

    Article  CAS  Google Scholar 

  • Peng Y, Abercrombie LL, Yuan JS, Riggins CW, Sammons RD, Tranel PJ, Stewart CN Jr (2010) Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for expression analysis of candidate non-target herbicide resistance genes. Pest Manag Sci 66:1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Perez-Jones A, Park KW, Polge N, Colquhoun J, Mallory-Smith CA (2007) Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta 226:395–404

    Article  PubMed  CAS  Google Scholar 

  • Powles SB (2010) Gene amplification delivers glyphosate-resistant weed evolution. Proc Natl Acad Sci USA 107:955–956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317–347

    Article  PubMed  CAS  Google Scholar 

  • Rojano-Delgado AM, Cruz-Hipolito H, De Prado R, Luque de Castro MD, Franco AR (2012) Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants. Phytochemistry 73:34–41

    Article  PubMed  CAS  Google Scholar 

  • Sammons RD, Gaines TA (2014) Glyphosate resistance: state of knowledge. Pest Manag Sci 70:1367–1377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Fernandez R, Davies TG, Coleman JO, Rea PA (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276:30231–30244

    Article  PubMed  CAS  Google Scholar 

  • Schafer JR, Hallett SG, Johnson WG (2014) Rhizosphere microbial community dynamics in glyphosate-treated susceptible and resistant biotypes of giant ragweed (Ambrosia trifida). Weed Sci 62:370–381

    Article  CAS  Google Scholar 

  • Schulz B, Kolukisaoglu HÜ (2006) Genomics of plant ABC transporters: the alphabet of photosynthetic life forms or just holes in membranes? FEBS Lett 580:1010–1016

    Article  PubMed  CAS  Google Scholar 

  • Shaner DL (2009) Role of translocation as a mechanism of resistance to glyphosate. Weed Sci 57:118–123

    Article  CAS  Google Scholar 

  • Shaner DL, Lindenmeyer RB, Ostlie MH (2012) What have the mechanisms of resistance to glyphosate taught us? Pest Manag Sci 68:3–9

    Article  PubMed  CAS  Google Scholar 

  • Simarmata M, Penner D (2008) The basis for glyphosate resistance in rigid ryegrass (Lolium Rigidum) from California. Weed Sci 56:181–188

    Article  CAS  Google Scholar 

  • Tian Y-S, Xu J, Xiong A-S, Zhao W, Fu X-Y, Peng R-H, Yao Q-H (2011) Improvement of glyphosate resistance through concurrent mutations in three amino acids of the Ochrobactrum 5-enopyruvylshikimate-3-phosphate synthase. Appl Environ Microbiol 77:8409–8414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Travlos IS, Chachalis D (2010) Glyphosate-resistant hairy fleabane (Conyza bonariensis) is reported in Greece. Weed Technol 24:569–573

    Article  CAS  Google Scholar 

  • Travlos IS, Chachalis D (2013) Assessment of glyphosate resistant horseweed (Conyza canadensis L. Cronq.) and fleabane (Conyza albida Willd. ex Spreng) populations from perennial crops in Greece. Int J Plant Prod 7:665–676

    Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  PubMed  CAS  Google Scholar 

  • Vila-Aiub MM, Balbi MC, Distefano AJ, Fernandez L, Hopp E, Yu Q, Powles SB (2012) Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake. Pest Manag Sci 68:430–436

    Article  PubMed  CAS  Google Scholar 

  • Wakelin AM, Preston C (2006) A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res 46:432–440

    Article  CAS  Google Scholar 

  • Windsor B, Roux SJ, Lloyd A (2003) Multi herbicide tolerance conferred by AtPgp1 and apyrase overexpression in Arabidopsis thaliana. Nat Biotechnol 21:428–433

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Huang S, Powles S (2010) Direct measurement of paraquat in leaf protoplasts indicates vacuolar paraquat sequestration as a resistance mechanism in Lolium rigidum. Pestic Biochem Physiol 98:104–109

    Article  CAS  Google Scholar 

  • Yuan JS, Tranel PJ, Stewart CN Jr (2007) Non-target-site herbicide resistance: a family business. Trends Plant Sci 12:6–13

    Article  PubMed  CAS  Google Scholar 

  • Zelaya IA, Owen MD, Vangessel MJ (2004) Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq. Theor Appl Genet 110:58–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Doug Sammons for providing all the supplementary information about ABC-transporter genes. Moreover, the authors would like to thank Vasilis Kotoulas, Sofia Lyberopoulou, and Eirini Trivela for technical support with experimental activities. The project BPI-Plant Heal-FP7-REGPOT-2008-1, NO. 230010 provided financial support to E.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demosthenis Chachalis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tani, E., Chachalis, D. & Travlos, I.S. A Glyphosate Resistance Mechanism in Conyza canadensis Involves Synchronization of EPSPS and ABC-transporter Genes. Plant Mol Biol Rep 33, 1721–1730 (2015). https://doi.org/10.1007/s11105-015-0868-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0868-8

Keywords

Navigation