Skip to main content
Log in

Biological Responses and Proteomic Changes in Maize Seedlings under Nitrogen Deficiency

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The influence of nitrogen (N) deficiency on tolerance mechanisms in seedlings of two maize hybrids (Xu178 × Huang-C and Xu178 × Zong3) and their parental inbred lines (Xu178, Huang-C and Zong3), which show different nitrogen use efficiency (NUE), was investigated using physiological measurements combined with global proteomics profiling. The root fresh weight and chlorophyll a/b ratio were reduced significantly in Huang-C (low NUE) under 0.002 mM nitrate treatment for 10 days, whereas no significant change in these two traits was observed in Xu178 (high NUE) under the same treatment compared with N-sufficient treatment. Fifty and 56 protein spots, which showed more than two-fold changes in abundance at P < 0.01 under low-N treatment compared with the control in the roots and leaves, respectively, were analyzed by protein mass spectrometry. Analysis of protein expression patterns revealed that proteins associated with carbohydrate metabolism, nucleotide metabolism, amino acid metabolism, disease/defense, and photosynthesis may be involved in N-deficiency responses. Low-N treatment led to an increased abundance of glutamine synthetase and transcripts in the root to improve the efficiency of N assimilation in the inbred line with HNE, and affected photosynthetic carbon fixation and starch metabolism in the leaves and consequently seedling growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31(3):325–340

    Article  CAS  PubMed  Google Scholar 

  • Bahrman N, Le Gouis J, Negroni L, Amilhat L, Leroy P, Lainé AL, Jaminon O (2004) Differential protein expression assessed by two–dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics 4(3):709–719

    Article  CAS  PubMed  Google Scholar 

  • Bänziger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. Breeding strategies. CIMMYT, Mexico

  • Bendall DS, Manasse RS (1995) Cyclic photophosphorylation and electron transport. Biochim Biophys Acta Bioenerg 1229(1):23–38

    Article  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391(6666):485–488

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2008) Molecular mechanisms of photosynthesis. Wiley-Blackwell, Oxford

  • Brugière N, Jiao S, Hantke S, Zinselmeier C, Roessler JA, Niu X, Jones RJ, Habben JE (2003) Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol 132(3):1228–1240

    Article  PubMed Central  PubMed  Google Scholar 

  • Campo S, Carrascal M, Coca M, Abian J, San Segundo B (2004) The defense response of germinating maize embryos against fungal infection: a proteomics approach. Proteomics 4(2):383–396

    Article  CAS  PubMed  Google Scholar 

  • Colell A, Ricci J-E, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW (2007) GAPDH and Autophagy Preserve Survival after Apoptotic Cytochrome c Release in the Absence of Caspase Activation. Cell 129(5):983–997

    Article  CAS  PubMed  Google Scholar 

  • Drew M, Saker L, Ashley T (1973) Nutrient supply and the growth of the seminal root system in barley I. The effect of nitrate concentration on the growth of axes and laterals. J Exp Bot 24(6):1189–1202

    Article  CAS  Google Scholar 

  • Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ (2010) Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol 152(3):1219–1250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gallais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55(396):295–306

    Article  CAS  PubMed  Google Scholar 

  • Goodwin T, Mercer E (1983) Plant phenolics. Introduction to Plant Biochemistry, 2nd edn. Pergamon, Oxford, pp 567–626

    Google Scholar 

  • Griffin TJ, Aebersold R (2001) Advances in proteome analysis by mass spectrometry. J Biol Chem 276(49):45497–45500

    Article  CAS  PubMed  Google Scholar 

  • Hakeem KR, Chandna R, Ahmad P, Ahmad A, Iqbal M (2012) Physiological and molecular analysis of applied nitrogenin rice genotypes. Rice Science Direct 19:213–222

  • Hatch MD, Slack CR (1969) NADP-specific malate dehydrogenase and glycerate kinase in leaves and evidence for their location in chloroplasts. Elsevier 34(5):589–593

    CAS  Google Scholar 

  • Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125(3):1258–1270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jin X, Fu Z, Ding D, Li W, Liu Z, Tang J (2013) Proteomic identification of genes associated with maize grain-filling rate. PLoS ONE 8(3):e59353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ju X-T, Xing G-X, Chen X-P, Zhang S-L, Zhang L-J, Liu X-J, Cui Z-L, Yin B, Christie P, Zhu Z-L (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA 106(9):3041–3046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konishi H, Ishiguro K, Komatsu S (2001) A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics 1(9):1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302(5647):1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Lacey JM, Wilmore DW (1990) Is glutamine a conditionally essential amino acid? Nutr Rev 48(8):297–309

    Article  CAS  PubMed  Google Scholar 

  • Lal SK (1992) Transcriptional and translational regulation of enolase under anaerobic stress in maize. Dissertation, University of Nebraska, Lincoln

  • Lam H-M, Coschigano K, Oliveira I, Melo-Oliveira R, Coruzzi G (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Biol 47(1):569–593

    Article  CAS  Google Scholar 

  • Liao C, Liu R, Zhang F, Li C, Li X (2012a) Nitrogen Under–and Over–supply Induces Distinct Protein Responses in Maize Xylem SapF. J Integr Plant Biol 54(6):374–387

    Article  CAS  PubMed  Google Scholar 

  • Liao C, Peng Y, Ma W, Liu R, Li C, Li X (2012b) Proteomic analysis revealed nitrogen-mediated metabolic, developmental, and hormonal regulation of maize (Zea mays L.) ear growth. J Exp Bot 63(14):5275–5288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Mayaudon J, Benson A, Calvin M (1957) Ribulose-1,5-diphosphate from and CO2 fixation by Tetragonia expansa leaves extract. Biochim Biophys Acta 23:342–351

    Article  CAS  PubMed  Google Scholar 

  • Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53(370):979–987

    Article  CAS  PubMed  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K-I, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429(6991):579–582

    Article  CAS  PubMed  Google Scholar 

  • Okamoto T, Higuchi K, Shinkawa T, Isobe T, Lörz H, Koshiba T, Kranz E (2004) Identification of major proteins in maize egg cells. Plant Cell Physiol 45(10):1406–1412

    Article  CAS  PubMed  Google Scholar 

  • Paponov I, Sambo P, Presterl T, Geiger H, Engels C (2005) Grain yield and kernel weight of two maize genotypes differing in nitrogen use efficiency at various levels of nitrogen and carbohydrate availability during flowering and grain filling. Plant Soil 272(1–2):111–123

    Article  CAS  Google Scholar 

  • Prinsi B, Negri A, Pesaresi P, Cocucci M, Espen L (2009) Evaluation of protein pattern changes in roots and leaves of Zea mays plants in response to nitrate availability by two-dimensional gel electrophoresis analysis. BMC Plant Biol 9 (113). doi:10.1186/1471-2229-9-113

  • Raven PH, Evert RF, Eichhorn SE (2005) Photosynthesis, Light, and Life. Biology of Plants (7th edn). Freeman, New York

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ (2009) A safe operating space for humanity. Nature 461(7263):472–475

    Article  PubMed  Google Scholar 

  • Rundel PW (1981) Physiological plant ecology I. Responses to the physical environment. Springer, Germany

    Google Scholar 

  • Ruuska SA, Lewis DC, Kennedy G, Furbank RT, Jenkins CL, Tabe LM (2008) Large scale transcriptome analysis of the effects of nitrogen nutrition on accumulation of stem carbohydrate reserves in reproductive stage wheat. Plant Mol Biol 66(1–2):15–32

    Article  CAS  PubMed  Google Scholar 

  • Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46(8):1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Sinfield JV, Fagerman D, Colic O (2010) Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Comput Electron Agric 70(1):1–18

    Article  Google Scholar 

  • Singh R, Green MR (1993) Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Sci NY Wash 259:365–365

    Article  CAS  Google Scholar 

  • Smil V (1996) Cycles of life: civilization and the biosphere. Scientific American Library, New York

  • Snyman H (2005) Rangeland degradation in a semi-arid South Africa—I: influence on seasonal root distribution, root/shoot ratios and water-use efficiency. J Arid Environ 60(3):457–481

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677

    Article  CAS  PubMed  Google Scholar 

  • Van Der Straeten D, Rodrigues-Pousada RA, Goodman HM, Van Montagu M (1991) Plant enolase: gene structure, expression, and evolution. Plant Cell Online 3(7):719–735

    Article  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA 107(9):4477–4482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 137(3):949–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Y, Liu W, Li X, Li M, Zhang D, Hao Z, Weng J, Xu Y, Bai L, Zhang S (2011) Low-nitrogen stress tolerance and nitrogen agronomic efficiency among maize inbreds: comparison of multiple indices and evaluation of genetic variation. Euphytica 180(2):281–290

    Article  Google Scholar 

  • Wu L, Zu X, Wang X, Sun A, Zhang J, Wang S, Chen Y (2012) Comparative proteomic analysis of the effects of salicylic acid and abscisic acid on maize (Zea mays L.) leaves. Plant Mol Biol Reporter 31:1–10

  • Xie H-L, Ji H-Q, Liu Z-H, Tian G-W, Wang C-L, Hu Y-M, Tang J-H (2009) Genetic basis of nutritional content of stover in maize under low nitrogen conditions. Euphytica 165(3):485–493

  • Zhu J, Alvarez S, Marsh EL, LeNoble ME, Cho I-J, Sivaguru M, Chen S, Nguyen HT, Wu Y, Schachtman DP (2007) Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol 145(4):1533–1548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program (2012AA10A305) and Scientific Personnel Innovation Fund of Henan Province in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Tang.

Additional information

Xining Jin and Weihua Li contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 6.41 mb)

Fig. S2

(TIFF 1.01 mb)

Fig. S3

(TIFF 1.19 mb)

Fig. S4

(TIFF 1.54 mb)

Fig. S5

(TIFF 1.04 mb)

Fig. S6

(TIFF 1.39 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Li, W., Hu, D. et al. Biological Responses and Proteomic Changes in Maize Seedlings under Nitrogen Deficiency. Plant Mol Biol Rep 33, 490–504 (2015). https://doi.org/10.1007/s11105-014-0762-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0762-9

Keywords

Navigation