Skip to main content
Log in

Identification and Characterization of the FT/TFL1 Gene Family in the Biofuel Plant Jatropha curcas

  • Brief Communication
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The transition from vegetative to reproductive growth is one of the most important developmental steps made by flowering plants. At the molecular level, the genes in the FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family, which encode proteins with high similarity to phosphatidyl ethanolamine-binding proteins, function as flowering promoters or repressors. Here, we isolated six members of the FT/TFL1 family from Jatropha curcas, a plant with considerable potential for various uses including biofuels. All members of this gene family display a common exon-intron organization. Sequence comparisons and phylogenetic analysis with homologous genes from other plant species group Jatropha FT/TFL1 genes into three major subfamilies: one into the FT-like, three into the TFL1-like, and two into the MOTHER OF FT AND TFL1 (MFT)-like subfamilies. Expression analysis indicates differences in the expression patterns of these six genes at the temporal and spatial levels. JcFT, the Jatropha FT homolog, is primarily expressed in the reproductive organs. JcTFL1a and JcTFL1c, two genes in the TFL1-like subfamily, are mainly expressed in the roots of juvenile plants, whereas JcTFL1b transcripts are abundantly accumulated in the fruits. In addition, two JcMFT genes are primarily expressed in the fruits. The differential expression of the FT/TFL1 gene family in Jatropha suggests that this gene family plays multifaceted roles in plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

AP1 :

APETALA 1

ATC :

ARABIDOPSIS THALIANA CENTRORADIALIS HOMOLOGUE

BFT :

BROTHER OF FT AND TFL1

FUL :

FRUITFULL

FT :

FLOWERING LOCUS T

MFT :

MOTHER OF FT AND TFL1

PEBP:

Phosphatidyl ethanolamine-binding protein

qRT-PCR:

Quantitative reverse transcriptase-polymerase chain reaction

SOC1 :

SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1

TF:

Transcription factor

TFL1 :

TERMINAL FLOWER 1

TSF :

TWIN SISTER OF FT

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309(5737):1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25(3):605–614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Akashi K (2012) Jatropha research: a new frontier for biofuel development. Plant Biotechnol 29(2):121

    Article  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275(5296):80–83

    Article  CAS  PubMed  Google Scholar 

  • Carmona MJ, Calonje M, Martínez-Zapater JM (2007) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63(5):637–650

    Article  CAS  PubMed  Google Scholar 

  • Chardon F, Damerval C (2005) Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol 61(5):579–590

    Article  CAS  PubMed  Google Scholar 

  • Chautard H, Jacquet M, Schoentgen F, Bureaud N, Bénédetti H (2004) Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae. Eukaryot Cell 3(2):459–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen M-S, Wang G-J, Wang R-L, Wang J, Song S-Q, Xu Z-F (2011) Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Sci 181(6):696–700. doi:10.1016/j.plantsci.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  • Chua N-H, Ye J, Geng Y-F, Zhang B (2013) Flowering modification in Jatropha and other plants. Publication No. WO 2013/130016 A1

  • D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65(6):972–979

    Article  PubMed  Google Scholar 

  • Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146(1):250–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ding L-W, Sun Q-Y, Wang Z-Y, Sun Y-B, Xu Z-F (2008) Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate. Anal Biochem 374(2):426–428

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL, Brown A (1990) A chloroplast-DNA phylogeny of the wild perennial relatives of soybean (Glycine subgenus Glycine): congruence with morphological and crossing groups. Evolution 44(2):371–389

    Article  CAS  Google Scholar 

  • Ghosh A, Chikara J, Chaudhary D, Prakash AR, Boricha G, Zala A (2010) Paclobutrazol arrests vegetative growth and unveils unexpressed yield potential of Jatropha curcas. J Plant Growth Regul 29(3):307–315

    Article  CAS  Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci U S A 102(21):7748–7753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harig L, Beinecke FA, Oltmanns J, Muth J, Müller O, Rüping B, Twyman RM, Fischer R, Prüfer D, Noll GA (2012) Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J 72(6):908–921

    CAS  PubMed  Google Scholar 

  • Hedman H, Källman T, Lagercrantz U (2009) Early evolution of the MFT-like gene family in plants. Plant Mol Biol 70(4):359–369

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y, Kohara M, Watanabe A, Yamada M, Aizu T (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 29:123–130

    Article  CAS  Google Scholar 

  • Huang NC, Jane WN, Chen J, Yu TS (2012) Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J 72(2):175–184

    Article  CAS  PubMed  Google Scholar 

  • Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N (2008) The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiol 49(3):291–300

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Nakatsuka T, Higuchi A, Nishihara M, Takahashi H (2011) The gentian orthologs of the FT/TFL1 gene family control floral initiation in Gentiana. Plant Cell Physiol 52(6):1031–1041

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA (2013) Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell 25(3):820–833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U (2011) Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol 156(4):1967–1977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khalil H, Aprilia N, Bhat A, Jawaid M, Paridah M, Rudi D (2013) A Jatropha biomass as renewable materials for biocomposites and its applications. Renew Sust Energ Rev 22:667–685

    Article  Google Scholar 

  • Kinoshita T, Ono N, Hayashi Y, Morimoto S, Nakamura S, Soda M, Kato Y, Ohnishi M, Nakano T, Inoue S-i (2011) FLOWERING LOCUS T regulates stomatal opening. Curr Biol 21(14):1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286(5446):1960

    Article  CAS  PubMed  Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S-i, Igasaki T, Nishiguchi M, Yano K, Shimizu T (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol 51(4):561–575

    Article  CAS  PubMed  Google Scholar 

  • Lee R, Baldwin S, Kenel F, McCallum J, Macknight R (2013) FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat Commun 4. doi:10.1038/ncomms3884

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCTmethod. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Matsoukas IG, Massiah AJ, Thomas B (2012) Florigenic and antiflorigenic signaling in plants. Plant Cell Physiol 53(11):1827–1842

    Article  CAS  PubMed  Google Scholar 

  • Mimida N, Goto K, Kobayashi Y, Araki T, Ahn JH, Weigel D, Murata M, Motoyoshi F, Sakamoto W (2001) Functional divergence of the TFL1‐like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells 6(4):327–336

    Article  CAS  PubMed  Google Scholar 

  • Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, Iwanami H, Moriya S, Abe K (2009) Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus × domestica Borkh.). Plant Cell Physiol 50(2):394–412

    Article  CAS  PubMed  Google Scholar 

  • Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, Shimamoto K, Prat S (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478(7367):119–122

    Article  CAS  PubMed  Google Scholar 

  • Ong H, Mahlia T, Masjuki H, Norhasyima R (2011) Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renew Sust Energy Rev 15(8):3501–3515

    Article  CAS  Google Scholar 

  • Pan B-Z, Xu Z-F (2011) Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 30(2):166–174. doi:10.1007/s00344-010-9179-3

    Article  CAS  Google Scholar 

  • Pillitteri LJ, Lovatt CJ, Walling LL (2004) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol 135(3):1540–1551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pin P, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35(10):1742–1755

    Article  CAS  PubMed  Google Scholar 

  • Posé D, Yant L, Schmid M (2012) The end of innocence: flowering networks explode in complexity. Curr Opin Plant Biol 15(1):45–50

    Article  PubMed  Google Scholar 

  • Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125(9):1609–1615

    CAS  PubMed  Google Scholar 

  • Ryu JY, Park C-M, Seo PJ (2011) The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. Mol Cells 32(3):295–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryu JY, Lee H-J, Seo PJ, Jung J-H, Ahn JH, Park C-M (2013) The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity. Mol Plant. doi:10.1093/mp/sst1114

    PubMed  Google Scholar 

  • Sato H, Heang D, Sassa H, Koba T (2009) Identification and characterization of FT/TFL1 gene family in cucumber. Breed Sci 59(1):3–11

    Article  CAS  Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18(1):65–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3(9):877–892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smart M, Roden LC (2013) Initiation of flowering in Protea compacta × Protea neriifolia hybrid ‘Carnival’ coincides with expression of the FLOWERING LOCUS T homologue. Plant Mol Biol Rep. doi:10.1007/s11105-013-0657-1

    Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68(12):2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Tsaftaris A, Pasentsis K, Argiriou A (2013) Cloning and characterization of FLOWERING LOCUS T-like genes from the perennial geophyte saffron crocus (Crocus sativus). Plant Mol Biol Rep 31(6):1558–1568

    Article  CAS  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309(5737):1056

    Article  CAS  PubMed  Google Scholar 

  • Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22(6):1733–1748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu F, Rong X, Huang X, Cheng S (2012) Recent advances of FLOWERING LOCUS T gene in higher plants. Int J Mol Sci 13(3):3773–3781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T (2005) TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol 46(8):1175–1189

    Article  CAS  PubMed  Google Scholar 

  • Yoo SY, Kardailsky I, Lee JS, Weigel D, Ahn JH (2004) Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol Cells 17(1):95–101

    CAS  PubMed  Google Scholar 

  • Yoo SJ, Chung KS, Jung SH, Yoo SY, Lee JS, Ahn JH (2010) BROTHER OF FT AND TFL1 (BFT) has TFL1‐like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J 63(2):241–253

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, He L-L, Fu Q-T, Xu Z-F (2013) Selection of reliable reference genes for gene expression studies in the biofuel plant Jatropha curcas using real-time quantitative PCR. Int J Mol Sci 14(12):24338–24354

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Top Science and Technology Talents Scheme of Yunnan Province (2009CI123), the Natural Science Foundation of Yunnan Province (2011FA034), and the CAS 135 Program (XTBG-T02) awarded to Z.-F. Xu. The authors gratefully acknowledge the Central Laboratory of the Xishuangbanna Tropical Botanical Garden for providing the research facilities.

Conflicts of Interest

The authors declare they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Fu Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 15 kb)

Table S2

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Luo, L., Fu, Q. et al. Identification and Characterization of the FT/TFL1 Gene Family in the Biofuel Plant Jatropha curcas . Plant Mol Biol Rep 33, 326–333 (2015). https://doi.org/10.1007/s11105-014-0747-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0747-8

Keywords

Navigation