Skip to main content
Log in

OsEMF2b Acts as a Regulator of Flowering Transition and Floral Organ Identity by Mediating H3K27me3 Deposition at OsLFL1 and OsMADS4 in Rice

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Flowering transition and floral organ development influence plant propagation and crop yield. Polycomb-group (PcG) gene EMF2 restrains flowering by suppressing floral organ identity genes as an epigenetic regulator in Arabidopsis. Here, we identified that OsEMF2b, a homologue of EMF2, acted as a regulator of flowering transition and floral organ identity in rice. The OsEMF2b T-DNA insertion mutations and RNA interference transgenic plants cause late flowering, whereas OsEMF2b overexpressing lines result in early flowering. The transcript levels of genes involved in rice flowering pathway differ in wild-type plants and osemf2b mutants. The transcripts of Ehd1, Hd3a, and RFT1 decrease, whereas the expression level of OsLFL1 increases in the osemf2b mutants under short-day and long-day conditions. These results indicated that OsEMF2b functioned as the upregulator of Ehd1, Hd3a, and RFT1 and the downregulator of OsLFL1 during floral induction. Quantitative RT-PCR assay indicated that OsEMF2b regulated the transcript levels of floral homeotic A-, B-, C-, D-, and E-class genes and participated in floral organ development in rice. Chromatin immunoprecipitation analyses showed that OsEMF2b was directly associated with OsLFL1 and OsMADS4, such that the H3K27me3 was enriched on these target genes chromatin in WT but not in the OsEMF2b RNAi plants. Our results demonstrate that OsEMF2b promotes flowering through direct suppressing of the OsLFL1 expression (a suppressor of flowering) via a mechanism distinct from Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aubert D, Chen L, Moon YH, Martin D, Castle LA, Yang CH, Sung ZR (2001) EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13(8):1865–1875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker A (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29(3):464–489

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J (2004) Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131(21):5263–5276

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Cheng JC, Castle L, Sung ZR (1997) EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9(11):2011–2024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316(5827):1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18(8):926–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao X, Liang W, Yin C, Ji S, Wang H, Su X, Guo C, Kong H, Xue H, Zhang D (2010) The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153(2):728–740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107(4):525–535

    Article  CAS  PubMed  Google Scholar 

  • Hou J-H, Gao Z-H, Zhang Z, Chen S-M, Ando T, Zhang J-Y, Wang X-W (2010) Isolation and characterization of an AGAMOUS homologue PmAG from the Japanese apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol Report 29(2):473–480

    Article  Google Scholar 

  • Kater MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57(13):3433–3444

    Article  CAS  PubMed  Google Scholar 

  • Kim SL, Lee S, Kim HJ, Nam HG, An G (2007) OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol 145(4):1484–1494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SY, Zhu T, Sung ZR (2010) Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis. Plant Physiol 152(2):516–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135(4):767–774

    Article  CAS  PubMed  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136(20):3443–3450

    Article  CAS  PubMed  Google Scholar 

  • Li H-y, F-f L, G-f L, Wang S, X-h G, Jing J (2011a) Molecular cloning and expression analysis of 13 MADS-Box genes in Betula platyphylla. Plant Mol Biol Report 30(1):149–157

    Article  Google Scholar 

  • Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater MM, Zhang D (2011b) Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. Plant Cell 23(7):2536–2552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Zhang Q, Wu C (2011c) Rice apoptosis inhibitor5 coupled with two dead-box adenosine 5′-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23(4):1416–1434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES (2009) Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Mol Plant 2(4):711–723

    Article  CAS  PubMed  Google Scholar 

  • Matsubara K, Yamanouchi U, Wang ZX, Minobe Y, Izawa T, Yano M (2008) Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol 148(3):1425–1435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moon YH, Chen L, Pan RL, Chang HS, Zhu T, Maffeo DM, Sung ZR (2003) EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell 15(3):681–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nallamilli BR, Zhang J, Mujahid H, Malone BM, Bridges SM, Peng Z (2013) Polycomb Group Gene OsFIE2 Regulates Rice (Oryza sativa) Seed development and grain filling via a mechanism distinct from Arabidopsis. PLoS Genet 9(3):e1003322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21(10):3008–3025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park SJ, Kim SL, Lee S, Je BI, Piao HL, Park SH, Kim CM, Ryu CH, Xuan YH, Colasanti J, An G, Han CD (2008) Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J 56(6):1018–1029

    Article  CAS  PubMed  Google Scholar 

  • Peng LT, Shi ZY, Li L, Shen GZ, Zhang JL (2007) Ectopic expression of OsLFL1 in rice represses Ehd1 by binding on its promoter. Biochem Biophys Res Commun 360(1):251–256

    Article  CAS  PubMed  Google Scholar 

  • Peng LT, Shi ZY, Li L, Shen GZ, Zhang JL (2008) Overexpression of transcription factor OsLFL1 delays flowering time in Oryza sativa. J Plant Physiol 165(8):876–885

    Article  CAS  PubMed  Google Scholar 

  • Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32(10):1412–1427

    Article  CAS  PubMed  Google Scholar 

  • Schubert D, Clarenz O, Goodrich J (2005) Epigenetic control of plant development by Polycomb-group proteins. Curr Opin Plant Biol 8(5):553–561

    Article  CAS  PubMed  Google Scholar 

  • Seok HY, Park HY, Park JI, Lee YM, Lee SY, An G, Moon YH (2010) Rice ternary MADS protein complexes containing class B MADS heterodimer. Biochem Biophys Res Commun 401(4):598–604

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Fang J, Zhao T, Xu B, Zhang F, Liu L, Tang J, Zhang G, Deng X, Chen F, Qian Q, Cao X, Chu C (2012) The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice. Plant Cell 24(8):3235–3247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316(5827):1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Taoka K, Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol 14(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Taoka K, Shimamoto K (2013) Florigen in rice: complex gene network for florigen transcription, florigen activation complex, and multiple functions. Curr Opin Plant Biol 16(2):228–235

    Article  CAS  PubMed  Google Scholar 

  • Wu C, You C, Li C, Long T, Chen G, Byrne ME, Zhang Q (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci U S A 105(35):12915–12920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu H, Chen LJ, Qu LJ, Gu HY, Li DZ (2010) Functional conservation of the plant EMBRYONIC FLOWER2 gene between bamboo and Arabidopsis. Biotechnol Lett 32(12):1961–1968

    Article  CAS  PubMed  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY (2006) Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18(1):15–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang CH, Chen LJ, Sung ZR (1995) Genetic regulation of shoot development in Arabidopsis: role of the EMF genes. Dev Biol 169(2):421–435

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lee S, Hang R, Kim SR, Lee YS, Cao X, Amasino R, An G (2013) OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J 73(4):566–578

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Chungen Hu for his helpful discussions. This research was supported by grants from the National Natural Science Foundation of China (30971551) and the Fundamental Research Funds for the Central Universities (Program No.2011QC026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialing Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Phenotype of Osemf2b homozygous mutants. a The phenotypes of Wild-Type plant and osemf2b homozygous mutant at heading stage under SD. b The phenotypes of Wild-Type plant and oSEMf2b homozygous mutant at heading stage under LD. c-e The phenotypes of spikelet of osemf2b homozygous mutant. WT, Wild-Type plants; Hom, osemf2b homozygous mutant. Bar 1 mm (GIF 174 kb)

High Resolution Image (TIFF 3730 kb)

Fig. S2

Observations of the inflorescence development of Wild-Type plants and osemf2b homozygous mutants confirmed the later flowering of osemf2b homozygous mutants. a The internodes of Wild-Type plants were more elongated and the young panicles in the main culms were more obvious at 55-57 days of cultivation compared with that of osemf2b homozygous mutants. The floral meristems were enlarged in the last inflorescence. b Floral transition of Wild-Type plants completed at 72 ~ 74d, a small number of osemf2b homozygous mutants began to enter reproductive stage. c osemf2b homozygous mutants from b are enlarged. WT, Wild-Type plants; Hom, osemf2b homozygous mutants. Bar 0.25 cm (GIF 24 kb)

High Resolution Image (TIFF 620 kb)

Fig. S3

OsEMF2b gene structure and its mutant identification. a Gene structure of OsEMF2b and T-DNA insertion site. Arrows indicate the three primers used for genotyping test. b The genotype identification result of OsEMF2b at heading stage. c Days to flowering of Wild-Type plants, osemf2b heterozygous mutants and osemf2b homozygous mutants in b. d Transcript level of Wild-Type plants, osemf2b heterozygous mutants and osemf2b homozygous mutants at heading stage. WT, Wild-Type plants; Het, osemf2b heterozygous mutants; Hom, osemf2b homozygous mutants (GIF 71 kb)

High Resolution Image (TIFF 874 kb)

Fig. S4

Relative expression level (a) and corresponding flowering time (b) of Wild-Type plants and complementation plants at heading stage in T 0 progenies. WT, Wild-Type plants; Com, Complementation plants. The blue arrow indicates negative transgenic plants; The black arrow indicates positive transgenic plants which are not restored the flowering phenotype and have similar expression level with negative transgenic plants; The red arrow indicates the three highest expression level plants. The day which T 0 transgenic plants were put into rooting medium was recorded as Day 0 (GIF 204 kb)

High Resolution Image (TIFF 7678 kb)

Fig. S5

Relative expression level (a) and corresponding flowering time (b) of Wild-Type plants and complementation plants at heading stage in T 2 progenies. WT, Wild-Type plants; Com, Complementation plants. The blue arrow indicates negative transgenic plants (GIF 183 kb)

High Resolution Image (TIFF 7729 kb)

Fig. S6

Relative expression level (a) and corresponding flowering time (b) of Wild-Type plants and OsEMF2b over-expressing transgenic plants at heading stage in T 0 progenies. WT, Wild-Type plants; OX, OsEMF2b over-expressing transgenic plants. The blue arrow indicates negative transgenic plants; The black arrow indicates positive transgenic plants which have not significant phenotype and have similar expression level with WT; The red arrow indicates the three highest expression level plants. The day which T 0 transgenic plants were put into rooting medium was recorded as Day 0 (GIF 215 kb)

High Resolution Image (TIFF 8264 kb)

Fig. S7

Relative expression level (a) and corresponding flowering time (b) of Wild-Type plants and OsEMF2b RNA interference plants at heading stage in T 0 progenies. WT, Wild-Type plants; RNAi, OsEMF2b RNA interference plants. The blue arrow indicates negative transgenic plants; The black arrow indicates positive transgenic plants which have not significant phenotype and have similar expression level with WT; The red arrow indicates the three lowest expression level plants. The day which T 0 transgenic plants were put into rooting medium was recorded as Day 0 (GIF 234 kb)

High Resolution Image (TIFF 9592 kb)

Fig. S8

Relative expression level (a) and corresponding flowering time (b) of Wild-Type plants, OsEMF2b over-expressing transgenic plants and OsEMF2b RNA interference plants at heading stage in T 2 progenies. WT, Wild-Type plants; OX, OsEMF2b over-expressing transgenic plants; RNAi, OsEMF2b RNA interference plants. The blue arrow indicates negative transgenic plants (GIF 212 kb)

High Resolution Image (TIFF 8591 kb)

Fig. S9

Diurnal expression patterns of OsEMF2b, OsLFL1, Hd3a, Ehd1, RFT1, OsMADS50, Hd1, RID1, Ghd7, OsGI, OsMADS51, and OsMADS14 in Wild-Type (filled circles) and osemf2b homozygous mutants (open circles) under LDs by quantitative RT-PCR analysis. The open and filled bars at the bottom represent the light and dark periods, respectively. WT, Wild-Type plants; Hom, osemf2b homozygous mutants (GIF 52 kb)

High Resolution Image (TIFF 489 kb)

Table S1

Primers used for the study (GIF 94 kb)

High Resolution Image (TIFF 6883 kb)

Table S2

Developmental stages of the SAM in Wide-Type and osemf2b homozygous. WT, Wild-Type; Hom, osemf2b homozygous (GIF 25 kb)

High Resolution Image (TIFF 1658 kb)

Table S3

The numbers of floral organ in Wild-Type, OsEMF2b RNA interference, osemf2b heterozygous and osemf2b homozygous; WT, Wild-Type; RNAi, OsEMF2b RNA interference; Het, osemf2b heterozygous; Hom, osemf2b homozygous (GIF 22 kb)

High Resolution Image (TIFF 1383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Chen, M., Pei, R. et al. OsEMF2b Acts as a Regulator of Flowering Transition and Floral Organ Identity by Mediating H3K27me3 Deposition at OsLFL1 and OsMADS4 in Rice. Plant Mol Biol Rep 33, 121–132 (2015). https://doi.org/10.1007/s11105-014-0733-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0733-1

Keywords

Navigation