Skip to main content

Advertisement

Log in

Universal ITS2 Barcoding DNA Region Coupled with High-Resolution Melting (HRM) Analysis for Seed Authentication and Adulteration Testing in Leguminous Forage and Pasture Species

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Legume species are part of a very important agricultural family, second only to cereals. Their importance for sustainable agriculture worldwide comes from their nitrogen-fixing ability. They include mainly annual grain crops and also very important perennial forage and pasture species. Given their small size, seed admixture and adulteration are a common problem, lowering the forage value, creating weed components in the grassland and causing digestive problems to animals. Here we report the application of the Barcode-DNA High-Resolution Melting (Bar-HRM) analysis method using the universal nuclear plant DNA barcoding region ITS2 for the identification, adulteration and quantification of the main pasture species. Bar-HRM detected Medicago lupulina adulterants in Trifolium pratense seeds as low as 1:100. In conclusion, Bar-HRM analysis could be a faster with higher resolution and cost-effective alternative method to authenticate forage and pasture species and quantitatively detect the purity of their seeds or their feed products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Australian Bureau of Statistics (2000) Australian Health Survey. http://www.abs.gov.au/websitedbs/D3310114.nsf/Home/Australian+Health+Survey

  • Chase MW, Cowan RS, Hollingsworth PM, van den Berg C et al (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299

    Google Scholar 

  • Cheng JC, Huang CL, Lin CC, Chen CC, Chang YC, Chang SS, Tseng CP (2006) Rapid detection and identification of clinically important bacteria by high-resolution melting analysis after broad-range ribosomal RNA real-time PCR. Clin Chem 52:1997–2004

    Article  PubMed  CAS  Google Scholar 

  • Dalmasso A, Fontanella E, Piatti P, Civera T, Secchi C, Bottero MT (2007) Identification of four tuna species by means of real-time PCR and melting curve analysis. Vet Res Commun 31:355–357

    Article  PubMed  Google Scholar 

  • Ferri G, Alu M, Corradini B, Beduschi G (2009) Forensic botany: species identification of botanical trace evidence using a multigene barcoding approach. Int J Legal Med 123:395–401

    Article  PubMed  Google Scholar 

  • Frantová E, Ofúkaný L (1990) Poisonous plants. Vydavate’stvo Obzor, Bratislava, in Slovak

    Google Scholar 

  • Ganopoulos I, Argiriou A, Tsaftaris A (2011a) Adulterations in Basmati rice detected quantitatively by combined use of microsatellite and fragrance typing with High Resolution Melting (HRM) analysis. Food Chem 129:652–659

    Article  CAS  Google Scholar 

  • Ganopoulos I, Argiriou A, Tsaftaris A (2011b) Microsatellite high resolution melting (SSR-HRM) analysis for authenticity testing of protected designation of origin (PDO) sweet cherry products. Food Control 22:532–541

    Article  CAS  Google Scholar 

  • Ganopoulos I, Madesis P, Darzentas N, Argiriou A, Tsaftaris A (2012) Barcode High Resolution Melting (Bar-HRM) analysis for detection and quantification of PDO “Fava Santorinis” (Lathyrus clymenum) adulterants. Food Chem 133:505–512

    Article  CAS  Google Scholar 

  • Gao T, Chen SL (2009) Authentication of the medicinal plants in Fabaceae by DNA barcoding technique. Planta Med 75:417–417

    Google Scholar 

  • Hewson K, Noormohammadi AH, Devlin JM, Mardani K, Ignjatovic J (2009) Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Arch Virol 154:649–660

    Article  PubMed  CAS  Google Scholar 

  • Hillman FH (1909) The adulteration of forage-plant seeds. GPO, Washington

    Google Scholar 

  • Hollingsworth PM (2011) Refining the DNA barcode for land plants. Proc Natl Acad Sci U S A 108:19451–19452

    Article  PubMed  CAS  Google Scholar 

  • Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim KJ, Kress WJ, Schneider H, van AlphenStahl J, Barrett SCH, van den Berg C, Bogarin D, Burgess KS, Cameron KM, Carine M, Chacon J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TAJ, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim YD, Lahaye R, Lee HL, Long DG, Madrinan S, Maurin O, Meusnier I, Newmaster SG, Park CW, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi DK, Little DP, Grp CPW (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 106:12794–12797

    Article  CAS  Google Scholar 

  • Jaakola L, Suokas M, Haggman H (2010) Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem 123:494–500

    Article  CAS  Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102:8369–8374

    Article  PubMed  CAS  Google Scholar 

  • Le Buanec B (1996) Globalization of the seed industry: current situation and evolution. International Seed Testing Association, Zürich

    Google Scholar 

  • Li JH, Yin YP, Zheng HP, Zhong MY, Peng RR, Wang B, Chen XS (2010) A high-resolution melting analysis for genotyping urogenital Chlamydia trachomatis. Diagn Microbiol Infect Dis 68:366–374

    Article  PubMed  CAS  Google Scholar 

  • Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen SL, Yang JB, Fu CX, Zeng CX, Yan HF, Zhu YJ, Sun YS, Chen SY, Zhao L, Wang K, Yang T, Duan GW (2011a) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci U S A 108:19641–19646

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wang X, Dong R, Yang Y, Zhou J, Yu C, Cheng Y, Yan C, Chen J (2011b) Evaluation of high-resolution melting for gene mapping in rice. Plant Mol Biol Rep 29:979–985

    Article  CAS  Google Scholar 

  • Mader E, Lukas B, Novak J (2008) A strategy to setup codominant microsatellite analysis for high-resolution-melting-curve-analysis (HRM). BMC Genet 9:69

    Google Scholar 

  • Mader E, Ruzicka J, Schmiderer C, Novak J (2011) Quantitative high-resolution melting analysis for detecting adulterations. Anal Biochem 409:153–155

    Article  PubMed  CAS  Google Scholar 

  • Maeta K, Ochi T, Tokimoto K, Shimomura N, Maekawa N, Kawaguchi N, Nakaya M, Kitamoto Y, Aimi T (2008) Rapid species identification of cooked poisonous mushrooms by using real-time PCR. Appl Environ Microbiol 74:3306–3309

    Article  PubMed  CAS  Google Scholar 

  • Míka V (2001) Phenolic substances in meadow plants. VÚRV, Prague, in Czech

    Google Scholar 

  • Monis PT, Giglio S, Saint CP (2005) Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis. Anal Biochem 340:24–34

    Article  PubMed  CAS  Google Scholar 

  • Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748–1754

    Google Scholar 

  • Watson LE, Sayed-Ahmed H, Badr A (2000) Molecular phylogeny of Old World Trifolium (Fabaceae), based on plastid and nuclear markers. Plant Syst Evol 224:153–171

    Article  CAS  Google Scholar 

  • Williams WM, Ansari HA, Ellison NW, Hussain SW (2001) Evidence of three subspecies in Trifolium nigrescens Viv. Ann Bot 87:683–691

    Article  CAS  Google Scholar 

  • Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    Article  PubMed  CAS  Google Scholar 

  • Wu SB, Wirthensohn MG, Hunt P, Gibson JP, Sedgley M (2008) High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet 118:1–14

    Google Scholar 

  • Yao H, Song J, Liu C, Luo K, Han J, Li Y, Pang X, Xu H, Zhu Y, Xiao P, Chen S (2010) Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One 5:e13102

    Article  PubMed  Google Scholar 

  • Zohary M, Heller D (1984) The genus Trifolium. Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Ralli from the Seed Bank of Greece of the National Agricultural Research Foundation for offering the material used in this study, Dr. Argiriou of our institute for his help in preparing the figures of the present manuscript and Mr. Pasentsis for his technical assistance. We also thank Mrs. Despoina Loukidou and Mrs. Laura Dadurian for proofreading the manuscript. The continuous support of the General Secretariat for Research and Technology is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Tsaftaris.

Additional information

Ioannis Ganopoulos and Panagiotis Madesis contributed equally for this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganopoulos, I., Madesis, P. & Tsaftaris, A. Universal ITS2 Barcoding DNA Region Coupled with High-Resolution Melting (HRM) Analysis for Seed Authentication and Adulteration Testing in Leguminous Forage and Pasture Species. Plant Mol Biol Rep 30, 1322–1328 (2012). https://doi.org/10.1007/s11105-012-0453-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0453-3

Keywords

Navigation