Skip to main content
Log in

Cloning and Characterization of a Homologue of the FLORICAULA/LEAFY Gene in Hickory (Carya cathayensis Sarg)

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Hickory (Carya cathayensis Sarg.) is an important economic nut tree in China. However, its long juvenile phase is a deterrent to expanding its cultivation and production to wider areas. To understand the genetic and molecular mechanisms that underlie the reproductive process in hickory trees, CcLFY, a homologue of FLORICAULA/LEAFY, was cloned and its expression patterns were studied during vegetative and reproductive development. The cDNA sequence of CcLFY consisted of 1,442 bp encoding a putative protein of 385 amino acids. The protein consisted of a Pro-rich region, a central acidic domain, a putative Leucine zipper, and a basic region formed by a core of Arg and Lys residues that are critical motifs for transcription factors. sThe amino acid sequence of the CcLFY protein shares 89.2% and 65.6% identities with LFY proteins of Castanea mollissima and Arabidopsis thaliana, respectively. CcLFY was highly expressed in flower buds and leaves, weakly expressed in stems, and was undetectable in roots. In situ hybridization revealed that CcLFY was highly expressed in both immature leaves and flower buds. Expression of CcLFY was initiated during floral transition in the spring, and subsequently, continued to increase, reaching peak levels at 16 days after full bloom (DAFB). Moreover, during this period, the major floral buds formed. Heterologous expression of CcLFY in transgenic tobacco plants induced precocious flowering of growing shoots, and flowers were of normal phenotypes. These results suggested that CcLFY might play a pivotal role in flower initiation and in the development of floral organs in C. cathayensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahearn KP, Johnson HA, Weigel D, Wagner DR (2001) NFL1, a Nicotiana tabacum LEAFY-like gene, controls meristem initiation and floral structure. Plant Cell Physiol 42:1130–1139

    Article  PubMed  CAS  Google Scholar 

  • Altschul J, Madden TL, Schffer AA, Zhang J, Zhang Z, Miler W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Blázquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    PubMed  Google Scholar 

  • Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130:2385–2395

    Article  PubMed  CAS  Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen ES (1996) Control of inflorescence architecture in Antirrhinum. Nature 379:791–797

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Beaulieu JF, Hugget J, Jaggi R, Kibenge FSB, Olsvik PA, Penning LC, Toegel S (2010) MIQE precis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 11:74–78

    Article  PubMed  Google Scholar 

  • Carmona MJ, Cubas P, Martinez-Zapater JM (2002) VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiol 130:68–77

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Wu L, Chen Y, Ku L, Yang S, Zhang S, Wang X, Wei X (2011) Expression and functional analysis of the ZCN1 (ZmTFL1) gene, a TERMINAL FLOWER 1 homologue that regulates the vegetative to reproductive transition in maize. Plant Mol Biol Rep. doi:10.1007/s11105-011-0317-2

  • Coen ES, Romero JM, Elliot R (1990) FLORICAULA: a homeotic gene required for flower development in Antirrhinum majus. Cell 63:1311–1322

    Article  PubMed  CAS  Google Scholar 

  • Dornelas MC, Rodriguez APM (2005a) A FLORICAULA/LEAFY gene homolog is preferentially expressed in developing female cones of the tropical pine Pinus caribaea var caribaea. Gen Mol Biol 28:299–307

    Article  CAS  Google Scholar 

  • Dornelas MC, Rodriguez APM (2005b) The rubber tree (Hevea brasiliensis MuellArg) homologue of the LEAFY/FLORICAULA gene is preferentially expressed in both male and female floral meristems. J Exp Bot 56:1965–1974

    Article  PubMed  CAS  Google Scholar 

  • Dornelas MC, Rodriguez APM (2006) The tropical cedar tree (Cedrela fissilis Vell, Meliaceae) homolog of the Arabidopsis LEAFY gene is expressed in reproductive tissues and can complement Arabidopsis leafy mutants. Planta 223:306–314

    Article  PubMed  CAS  Google Scholar 

  • Dornelas MC, Wittich PE, von Recklinghausen IR, van Lammeren AAM, Kreis M (1999) Characterization of three novel members of the Arabidopsis SHAGGY-related protein kinases (ASK) multigene family. Plant Mol Biol 39:137–147

    Article  PubMed  CAS  Google Scholar 

  • Dornelas MC, Van Lammeren AA, Kreis M (2000) Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development. Plant J 21:419–429

    Article  PubMed  CAS  Google Scholar 

  • Dornelas MC, Amaral WN, Rodriguez APM (2004) EgLFY, the Eucalyptus grandis homolog of the Arabidopsis gene LEAFY is expressed in reproductive and vegetative tissues. Braz J Plant Physiol 16:105–114

    Article  CAS  Google Scholar 

  • Du N, Pijut PM (2010) Isolation and characterization of an AGAMOUS homolog from Fraxinus pennsylvanica. Plant Mol Biol Rep 28:344–351

    Article  CAS  Google Scholar 

  • Frohlich MW, Estabrook GF (2000) Wilkinson support calculated with exact probabilities: an example using Floricaula/LEAFY amino acid sequences that compares three hypotheses involving gene gain/loss in seed plants. Mol Biol Evol 17:1914–1925

    Article  PubMed  CAS  Google Scholar 

  • Hamès C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gérard F, Martiel JL, Benlloch R, Parcy F, Müller CW (2008) Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO J 27:2628–2637

    Article  PubMed  Google Scholar 

  • Hou JH, Gao ZH, Zhang Z, Chen SM, Ando T, Zhang JY, Wang XW (2011) Isolation and characterization of an AGAMOUS homologue PmAG from the Japanese apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol Rep 29:473–480

    Article  CAS  Google Scholar 

  • Huang Y, Xia G, Wang Z, Zheng B, Liang J, Huang J (2007) Studies on anatomy of development of female flower in Carya cathayensis Sarg. Acta Agriculturae Universitatis Jiangxiensis 29(5):723–726

    Google Scholar 

  • Kelly AJ, Bonnlander MB, Meeks-Wagner DR (1995) NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell 7:225–234

    Article  PubMed  CAS  Google Scholar 

  • Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K (1998) Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci USA 95(5):1979–1982

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Wolfe DS, Nilsson O, Weigel D (1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr Biol 7(2):95–104

    Article  PubMed  Google Scholar 

  • Li H, Liu F, Liu G, Wang S, Guo X, Jing J (2011) Molecular cloning and expression analysis of 13 MADS-Box genes in Betula platyphylla. Plant Mol Biol Rep. doi:10.1007/s11105-011-0326-1

  • Liu C, Thong Z, Yu H (2009) Coming into bloom: the specification of floral meristems. Development 136:3379–3391

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Anderson JM, Pijut PM (2010) Cloning and characterization of Prunus serotina AGAMOUS, a putative flower homeotic gene. Plant Mol Biol Rep 28:193–203

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2:135–142

    Article  PubMed  CAS  Google Scholar 

  • Ma G, Ning G, Zhang W, Zhan J, Lv H, Bao M (2011) Overexpression of Petunia SOC1-like gene FBP21 in tobacco promotes flowering without decreasing flower or fruit quantity. Plant Mol Biol Rep 29:573–581

    Article  CAS  Google Scholar 

  • Maizel A, Busch MA, Tanahashi T, Perkovic J, Kato M, Hasebe M, Weigel D (2005) The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science 308:260–263

    Article  PubMed  CAS  Google Scholar 

  • Mellerowicz EJ, Horgan K, Walden A, Coker A, Walter C (1998) PRFLL—a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia. Planta 206:619–629

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46:292–299

    Article  PubMed  CAS  Google Scholar 

  • Mouradov A, Glassic T, Hamdorf B, Murphy L, Fowler B, Marla S, Teasdale RD (1998) NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci USA 95:6537–6542

    Article  PubMed  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    PubMed  CAS  Google Scholar 

  • Moyroud E, Tichtinsky G, Parcy F (2009) The LEAFY floral regulators in Angiosperms: conserved proteins with diverse roles. J Plant Biol 52:177–185

    Article  CAS  Google Scholar 

  • Moyroud E, Kusters E, Monniaux M, Koes R, Parcy F (2010) LEAFY blossoms. Trends Plant Sci 15:346–352

    Article  PubMed  CAS  Google Scholar 

  • Peña L, Martin-Trillo M, Juárez J, Pina JA, Navarro L, Martínez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267

    Article  PubMed  Google Scholar 

  • Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of over-expression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch FP, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Shiokawa T, Yamada S, Futamura N, Osani K, Murasugi D, Shinohara K, Kawai S, Morohoshi N, Katayama Y, Kajita S (2008) Isolation and functional analysis of the CjNdly gene, a homolog in Cryptomeria japonica of FLORICAULA/LEAFY genes. Tree Physiol 28:21–28

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289

    Article  PubMed  CAS  Google Scholar 

  • Souer E, Vander K, Kloos D, Spelt C, Bliek M (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125:733–742

    PubMed  CAS  Google Scholar 

  • Southerton SG, Marshall H, Mouradov A (1998) Eucalyptus MADS-box genes expressed in developing flowers. Plant Physiol 118:365–372

    Article  PubMed  CAS  Google Scholar 

  • Tai TH, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8:297–303

    Article  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc., Sunderland MA

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Cao QF, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Bio 49:567–577

    Article  CAS  Google Scholar 

  • Walton EF, Podivinsky E, Wu RM (2001) Bimodal pattern of floral gene expression over the two seasons that kiwifruit flowers develop. Physiol Plant 111:396–404

    Article  PubMed  CAS  Google Scholar 

  • Wang SX, Hunter W, Plant A (2000) Isolation and purification of functional total RNA from woody branches and needles of Sitka and white spruce. Biotechniques 28:292–296

    PubMed  CAS  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz FM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 4:910–913

    Google Scholar 

  • Xu J, Zhong X, Zhang Q, Li H (2010) Overexpression of the GmGAL2 gene accelerates flowering in Arabidopsis. Plant Mol Biol Rep 28:704–711

    Article  CAS  Google Scholar 

  • Yamada S, Kajita S, Shiokawa T, Morohoshi N (2003) Isolation and functional analysis of the promoter sequence of the Cryj1 gene, which encodes a major allergenic protein in the pollen of Japanese cedar (Cryptomeria japonica). Plant Biotechnol 20:241–245

    Article  CAS  Google Scholar 

  • Zhang A, Qiu L, Huang L, Yu X, Lu G, Cao J (2011) Isolation and characterization of an anther-specific polygalacturonase gene, BcMF16, in Brassica campestris ssp. chinensis. Plant Mol Biol Rep 2011. doi:10.1007/s11105-011-0341-2

  • Zheng BS, Chu HL, Jin SH, Huang YJ, Wang ZJ, Chen M, Huang JQ (2010) cDNA-AFLP analysis of gene expression in hickory (Carya cathayensis) during graft process. Tree Physiol 30:297–303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30872047, 31170637 and 31070604), the initial project of the National Basic Research Program of China (2011CB111510), the Zhejiang Provincial Natural Science Foundation of China (Z307534 and Y305331), the Key Project of the Department of Science and Technology of Zhejiang Province (2007C12023) and the Innovation Team Project of Zhejiang A & F University (Class B) (2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Song Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z.J., Huang, J.Q., Huang, Y.J. et al. Cloning and Characterization of a Homologue of the FLORICAULA/LEAFY Gene in Hickory (Carya cathayensis Sarg). Plant Mol Biol Rep 30, 794–805 (2012). https://doi.org/10.1007/s11105-011-0389-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0389-z

Keywords

Navigation