Skip to main content
Log in

Investigating the Role of OsPDCD5, a Homolog of the Mammalian PDCD5, in Programmed Cell Death by Inducible Expression in Rice

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

OsPDCD5 is the rice (Oryza sativa L.) homolog of PDCD5, a gene involved in programmed cell death (PCD) regulation and highly conserved over time. PDCD5 overexpression in tumor cells enhances apoptosis triggered by growth factor or serum deprivation. In our previous research, constitutive OsPDCD5 overexpression induces early death in transgenic plants. In this study, an inducible OsPDCD5 expression strategy was employed to systematically study the role of OsPDCD5 in rice. With this system, OsPDCD5 was found to be capable of independently inducing cell death in three-leaf stage and older seedlings. These altered plants exhibited lesion mimic phenotype, abnormal leaf morphology, DNA fragmentation, hydrogen peroxide production, and mitochondrial distortion. In nature, RNA hybridization in situ has shown that OsPDCD5 expression was predominantly localized to the tapetal layer where PCD occurred. Transcript microarray analyses here revealed that many PCD-related genes were involved. These data, taken together, indicated that OsPDCD5-induced cell death is a kind of PCD. Nevertheless, OsPDCD5 failed to induce any visible morphological phenotypes in two-leaf stage and younger seedlings. Transcript microarray analyses and quantitative real-time polymerase chain reaction showed that the Bax inhibitor-1 (BI-1) mRNA concentration and the activity of an ubiquitin gene were specifically changed. Endogenous OsPDCD5 upregulation, induced by ectopic OsPDCD5 expression in three-leaf stage seedlings, was also absent in two-leaf stage seedlings, suggesting strongly that young seedlings could inhibit PCD at some level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramovitch RB (2006) Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proc Natl Acad Sci 103(8):2851–2856. doi:10.1073/pnas.0507892103

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arpagaus S, Rawyler A, Braendle R (2002) Occurrence and characteristics of the mitochondrial permeability transition in plants. J Biol Chem 277(3):1780–1787

    Article  PubMed  CAS  Google Scholar 

  • Attia K, Ke-Gui L, Chun W, Guang-Ming H, Wei S, Jin-Shui Y (2005) Overexpression of the OsPDCD5 gene induces programmed cell death in rice. J Integr Plant Biol 47(9):1115–1122

    Article  CAS  Google Scholar 

  • Balk J, Chew S, Leaver C, McCabe P (2003) The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J 34(5):573–583

    Article  PubMed  CAS  Google Scholar 

  • Burbridge E, Diamond M, Dix P, McCabe P (2006) Use of cell morphology to evaluate the effect of a peroxidase gene on cell death induction thresholds in tobacco. Plant Sci 171(1):139–146

    Article  CAS  Google Scholar 

  • Chang P, Huang C, Chang F, Tseng T, Lin W, Lin C (2001) Isolation and characterization of the third gene encoding a 16.9 kDa class I low-molecular-mass heat shock protein, Oshsp 16.9 C, in rice. Botanical Bulletin of Academia Sinica 42(2):85–92

    CAS  Google Scholar 

  • Chen Y, Sun R, Han W, Zhang Y, Song Q, Di C, Ma D (2001) Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis? FEBS Lett 509(2):191–196

    Article  PubMed  CAS  Google Scholar 

  • Chen N, Liu Y, Liu X, Chai J, Hu Z, Guo G, Liu H (2009) Enhanced tolerance to water deficit and salinity stress in transgenic Lycium barbarum L. plants ectopically expressing ATHK1, an Arabidopsis thaliana histidine kinase gene. Plant Mol Biol Report 27(3):321–333

    Article  Google Scholar 

  • Demaurex N, Distelhorst C (2003) Cell biology: apoptosis—the calcium connection. Sci Signal 300(5616):65–67

    CAS  Google Scholar 

  • Fu W, Shuai L, Yao J, Yu S, Liu F, Duan D (2010) Molecular cloning and analysis of a cytosolic Hsp70 gene from Enteromorpha prolifera (Ulvophyceae, Chlorophyta). Plant Mol Biol Report 28(3):430–437

    Article  CAS  Google Scholar 

  • Gao C, Wang Y, Liu G, Wang C, Jiang J, Yang C (2010) Cloning of ten peroxidase (POD) genes from Tamarix hispida and characterization of their responses to abiotic stress. Plant Mol Biol Report 28(1):77–89

    Article  Google Scholar 

  • Gechev T, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168(1):17–20

    Article  PubMed  CAS  Google Scholar 

  • George S, Parida A (2010) Characterization of an oxidative stress inducible nonspecific lipid transfer protein coding cDNA and its promoter from drought tolerant plant Prosopis juliflora. Plant Mol Biol Report 28(1):32–40

    Article  CAS  Google Scholar 

  • Hetz C (2007) ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. Antioxid Redox Signal 9(12):2345–2356

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Sun Q, Qin F, Li C, Zhao Y, Zhou D (2007) Down-regulation of a silent information regulator2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144(3):1508–1519

    Article  PubMed  CAS  Google Scholar 

  • Ihara-Ohori Y, Nagano M, Muto S, Uchimiya H, Kawai-Yamada M (2007) Cell death suppressor Arabidopsis bax inhibitor-1 is associated with calmodulin binding and ion homeostasis. Plant Physiol 143(2):650–660

    Article  PubMed  CAS  Google Scholar 

  • Jesenberger V, Jentsch S (2002) Deadly encounter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol 3(2):112–121

    Article  PubMed  CAS  Google Scholar 

  • Jones A (2000) Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci 5(5):225–230

    Article  PubMed  CAS  Google Scholar 

  • Kang C, Jung W, Kang Y, Kim J, Kim D, Jeong J, Baek D, Jin J, Lee J, Kim M (2005) AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ 13:84–95

    Article  Google Scholar 

  • Kato H, Xie G, Sato Y, Imai R (2010) Isolation of anther-specific gene promoters suitable for transgene expression in rice. Plant Mol Biol Report 28(3):381–387

    Article  CAS  Google Scholar 

  • Kawai M, Pan L, Reed J, Uchimiya H (1999) Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett 464(3):143–147

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax inhibitor-1 (AtBI-1). Proc Natl Acad Sci 98(21):12295–12300

    Article  PubMed  CAS  Google Scholar 

  • Kawanabe T, Ariizumi T, Kawai-Yamada M, Uchimiya H, Toriyama K (2006) Abolition of the tapetum suicide program ruins microsporogenesis. Plant Cell Physiol 47(6):784–787

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Lim J, Ahn C, Park K, Kim G, Kim W, Pai H (2006a) Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18(9):2341–2355

    Article  PubMed  CAS  Google Scholar 

  • Kim R, Emi M, Tanabe K (2006b) Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol 57(5):545–553

    Article  PubMed  CAS  Google Scholar 

  • Kowaltowski A, Castilho R, Vercesi A (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495(1–2):12–15

    Article  PubMed  CAS  Google Scholar 

  • Li QF, Sun SSM, Yuan DY, Yu HX, Gu MH, Liu QQ (2010) Validation of candidate reference genes for the accurate normalization of real-time quantitative RT-PCR data in rice during seed development. Plant Mol Biol Report 28(1):49–57

    Article  Google Scholar 

  • Liu H, Wang Y, Zhang Y, Song Q, Di C, Chen G, Tang J, Ma D (1999) TFAR19, a novel apoptosis-related gene cloned from human leukemia cell line TF-1, could enhance apoptosis of some tumor cells induced by growth factor withdrawal. Biochem Biophys Res Commun 254(1):203–210

    Article  PubMed  CAS  Google Scholar 

  • Lockshin R, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36(12):2405–2419

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, Gossele V, de Beuckeleer M, de Block M, Goldberg R, de Greef W, Leemans J (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357(6377):384–387

    Article  CAS  Google Scholar 

  • McCabe P (2008) Apoptotic-like programmed cell death in plants. New Phytol 180(1):13–26

    Article  PubMed  Google Scholar 

  • Nagano M, Ihara-Ohori Y, Imai H, Inada N, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2009) Functional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochrome b5. Plant J 58(1):122–134

    Article  CAS  Google Scholar 

  • Panda S, Yamamoto Y, Kondo H, Matsumoto H (2008) Mitochondrial alterations related to programmed cell death in tobacco cells under aluminium stress. C r Biol 331(8):597–610

    Article  PubMed  CAS  Google Scholar 

  • Phillips MA, D'Auria JC, Luck K, Gershenzon J (2009) Evaluation of candidate reference genes for real-time quantitative PCR of plant samples using purified cDNA as template. Plant Mol Biol Report 27(3):407–416

    Article  CAS  Google Scholar 

  • Qi J, Yu S, Zhang F, Shen X, Zhao X, Yu Y, Zhang D (2010) Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol Biol Report 28(4):597–604

    Article  CAS  Google Scholar 

  • Reape T, Molony E, McCabe P (2008) Programmed cell death in plants: distinguishing between different modes. J Exp Bot 59(3):435–444

    Article  PubMed  CAS  Google Scholar 

  • Scorrano L, Korsmeyer S (2003) Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304(3):437–444

    Article  PubMed  CAS  Google Scholar 

  • Song H, Fan P, Li Y (2009) Overexpression of organellar and cytosolic AtHSP90 in Arabidopsis thaliana impairs plant tolerance to oxidative stress. Plant Mol Biol Report 27(3):342–349

    Article  CAS  Google Scholar 

  • Su W, Wu J, Wei C, Li K, He G, Attla K, Qian X, Yang J (2006) Interaction between programmed cell death 5 and calcineurin B-like interacting protein kinase 23 in Oryza sativa. Plant Sci 170(6):1150–1155

    Article  CAS  Google Scholar 

  • Tai HH, Conn G, Davidson C, Platt HWB (2009) Arbitrary multi-gene reference for normalization of real-time PCR gene expression data. Plant Mol Biol Report 27(3):315–320

    Article  CAS  Google Scholar 

  • Tiwari B, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128(4):1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Vacca R, de Pinto M, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol 134:1100–1112

    Article  PubMed  CAS  Google Scholar 

  • van Doorn W, Woltering E (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10(3):117–122

    Article  PubMed  Google Scholar 

  • Virolainen E, Blokhina O, Fagerstedt K (2002) Ca2+-induced high amplitude swelling and cytochrome c release from wheat (Triticum aestivum L.) mitochondria under anoxic stress. Ann Bot 90(4):509–516

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15(22):2922–2933

    PubMed  CAS  Google Scholar 

  • Wang Y, Li X, Wang L, Ding P, Zhang Y, Han W, Ma D (2004) An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression. J Cell Sci 117(8):1525–1532

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Dong J, Liu Y, Gao H (2010a) A novel dehydration-responsive element-binding protein from Caragana korshinskii is involved in the response to multiple abiotic stresses and enhances stress tolerance in transgenic tobacco. Plant Mol Biol Report 28(4):664–675

    Article  Google Scholar 

  • Wang Y, Zha X, Zhang S, Qian X, Dong X, Sun F, Yang J (2010b) Down-regulation of the OsPDCD5 gene induced photoperiod-sensitive male sterility in rice. Plant Sci 178(2):221–228

    Article  CAS  Google Scholar 

  • Watanabe N, Lam E (2008) BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem 283(6):3200–3210

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Lam E (2009) Bax inhibitor-1, a conserved cell death suppressor, is a key molecular switch downstream from a variety of biotic and abiotic stress signals in plants. Int J Mol Sci 10(7):3149–3167

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Reed J (1998) Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1(3):337–346

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Chen Y, Song Q, Xu D, Wang Y, Ma D (2009) PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and dna damage-induced apoptosis. Neoplasia 11(4):345–354

    PubMed  CAS  Google Scholar 

  • Yang CW (2006) The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense. Plant Cell 18(4):1084–1098. doi:10.1105/tpc.105.039198

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yu X (2003) Regulation of apoptosis: the ubiquitous way. FASEB J 17(8):790–799

    Article  PubMed  CAS  Google Scholar 

  • Zeng LR (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-Box/Armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16(10):2795–2808. doi:10.1105/tpc.104.025171

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Zhang Z, Gregersen P, Mikkelsen J, de Neergaard E, Collinge D, Thordal-Christensen H (1998) Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol 117(1):33–41

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Major State Basic Research Development Program of China (973 Program, No. 2007CB109002) and the Foundation of State Key Laboratory of Gene Engineering, Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinshui Yang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, F., Qi, W., Qian, X. et al. Investigating the Role of OsPDCD5, a Homolog of the Mammalian PDCD5, in Programmed Cell Death by Inducible Expression in Rice. Plant Mol Biol Rep 30, 87–98 (2012). https://doi.org/10.1007/s11105-011-0307-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0307-4

Keywords

Navigation