Skip to main content

Advertisement

Log in

Recent Discoveries on the Roles of Polyphosphates in Plants

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Polyphosphate (polyP) has been abundant on Earth long before life began. In living organisms, polyphosphate can be stored in electron-dense granules that have long been referred to as volutin granules. After having being ignored for a long time, this polymer has proven to have numerous unsuspected functions in living organisms and is receiving more attention. The ubiquitous presence of polyP in nature and its structural and physico-chemical characteristics appear to be the drivers for the evolutionary selection of this versatile molecule as a component of cellular processes. Most of our knowledge about the functions of polyP comes from the microbial world. PolyP can influence the transcription and translation of specific genes, act as a metabolic regulator, provide an alternative source of energy, and modulate several stress responses. In plant systems, although the presence of polyP has long been known, its roles in cellular processes have begun to emerge only recently. The purpose of this mini-review is to provide a brief overview of the proposed biological roles of polyphosphates in plants and their roles in microbial/plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguilera A, Amils R (2005) Tolerance to cadmium in Chlamydomonas sp (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aquat Toxicol 75:316–329

    CAS  PubMed  Google Scholar 

  • Ahn K, Kornberg A (1990) Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem 265:11734–11739

    CAS  PubMed  Google Scholar 

  • Akiyama M, Crooke E, Kornberg A (1993) An exopolyphosphatase of Echerichia coli. The enzyme and its ppx gene in a polyphosphate operon. J Biol Chem 268:633

    CAS  PubMed  Google Scholar 

  • Albi-Rodríguez T, Serrano A (2008) Identification of genes and functional characterization of proteins involved in polyphosphate metabolism in photosynthetic organisms. In Photosynthesis. Energy from the sun. Proceedings of the 14th International Congress on Photosynthesis. Springer, Heidelberg. pp 957–963

  • Alfalo C, Shavit N (1983) Steady-state kinetics of photophosphorylation: limited access of nucleotides to the active site on the ATP synthetase. FEBS Lett 154:175–179

    Google Scholar 

  • Andreeva NA, Kulakovskaya TV, Kulaev IS (2001) Two exopolyphosphatases of the cytosol of the yeast S. cerevisiae: comparative characteristics. Biochem (Moscow) 66:147–153

    CAS  Google Scholar 

  • Bowen DE, Souza EJ, Guttieri MJ, Raboy V, Fu J (2007) A low phytic acid barley mutation alters seed gene expression. Crop Sci 47:S-149–S-159

    Google Scholar 

  • Boyce KJ, Kretschmer M, Kronstad JW (2006) The vtc4 gene influences polyphosphate storage, morphogenesis, and virulence in the maize pathogen Ustilago maydis. Eukaryotic Cell 5:1399–1409

    CAS  PubMed  Google Scholar 

  • Brown MR, Kornberg A (2004) Inorganic polyphosphate in the origin and survival of species. Proc Natl Acad Sci USA 101:16085–16087

    CAS  PubMed  Google Scholar 

  • Brown MRW, Kornberg A (2008) The long and short of it—polyphosphate, PPK and bacterial survival. Trends Biochem Sci 33:284–290

    CAS  PubMed  Google Scholar 

  • Cruz JA, Salbilla BA, Kanazawa A, Kramer DM (2001) Inhibition of plastocyanin to P700+ electron transfer in Chlamydomonas reinhardtii by hyperosmotic stress. Plant Physiol 127:1167–1179

    CAS  PubMed  Google Scholar 

  • Das S, Reusch RN (2001) pH regulates cation selectivity of poly-(R)-3-hydroxybutyrate/polyphosphate channels from E. coli in planar lipid bilayers. Biochem 40:2075–2079

    CAS  Google Scholar 

  • DeMason DA, Stillman JI (1986) Identification of phosphate granules occurring in seedling tissue of two palm species (Phoenix dactylifera and Washingtonia filifera). Planta 167:321–329

    CAS  Google Scholar 

  • Docampo R, Scott DA, Vercesi AE, Moreno SN (1995) Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 310:1005–1012

    CAS  PubMed  Google Scholar 

  • Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN (2005) Acidocalcisomes conserved from bacteria to man. Nat Rev Microbiol 3:251–261

    CAS  PubMed  Google Scholar 

  • Ercetin ME, Gillaspy GE (2004) Molecular characterization of an Arabidopsis gene encoding a phospholipid-specific inositol polyphosphate 5-phosphatase. Plant Physiol 135:938–946

    CAS  PubMed  Google Scholar 

  • Erhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85:673–681

    Google Scholar 

  • Fang J, Ruiz FA, Docampo M, Luo S, Rodrigues JCF, Motta LS, Rohloff P, Docampo R (2007) Overexpression of a Zn2+-sensitive soluble exopolyphosphatase from Trypanosoma cruzi depletes polyphosphate and affects osmoregulation. J Biol Chem 282:32501–32510

    CAS  PubMed  Google Scholar 

  • Frank M, Egile C, Dyachok J, Djakovic S, Nolasco M, Li R, Smith LG (2004) Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE. Proc Natl Acad Sci USA 101:16379–16384

    CAS  PubMed  Google Scholar 

  • Funamoto R, Saito K, Oyaizu H, Saito M, Aono T (2007) Simultaneous in situ detection of alkaline phosphatase activity and polyphosphate in arbuscules within arbuscular mycorrhizal roots. J Funct Plant Biol 34:803–810

    CAS  Google Scholar 

  • Gezelius K (1974) Inorganic polyphosphates and enzymes of polyphosphate metabolism in the cellular slime mold Dictyostelium discoideum. Arch Microbiol 98:311

    CAS  PubMed  Google Scholar 

  • Godfried MR (1980) Localization of divalent cations in phosphate-rich cytoplasmic granules in yeast. Physiol Plant 48:47–50

    Google Scholar 

  • Gomes FM, Ramos IB, Motta LM, Miranda K, Santiago MF, de Souza W, Machado EA (2008) Polyphosphate polymers during early embryogenesis of Periplaneta americana. J Insect Physiol 54:1459–1466

    CAS  PubMed  Google Scholar 

  • Gomez-Garcia MAR, Kornberg A (2004) Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate. Proc Natl Acad Sci USA 101:15876–15880

    CAS  PubMed  Google Scholar 

  • Grzam A, Tennstedt P, Clemens S, Hell R, Meyer AJ (2006) Vacuolar sequestration of glutathione S-conjugates out competes a possible degradation of the glutathione moiety by phytochelatin synthase. Febs Lett 580:6384–6390

    CAS  PubMed  Google Scholar 

  • Gustin MC, Zhou XL, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765

    CAS  PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    CAS  PubMed  Google Scholar 

  • Heldt HW, Chon CJ, Lorimer GH (1978) Phosphate requirement for the light activation of ribulose-1, 5-biphosphate carboxylase in intact spinach chloroplasts. FEBS Lett 92:234–240

    CAS  Google Scholar 

  • Hooley P, Whitehead MP, Brown MRW (2008) Eukaryote polyphosphate kinases: is the ‘Kornberg’ complex ubiquitous? Trends Biochem Sci 33:577–582

    CAS  PubMed  Google Scholar 

  • Hussey PJ, Ketelaar T, Deeks MJ (2006) Control of the actin cytoskeleton in plant cell growth. Annu Rev Plant Biol 57:109–125

    CAS  PubMed  Google Scholar 

  • Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2:327–338

    CAS  PubMed  Google Scholar 

  • Ishige K, Zhang H, Kornberg A (2002) Polyphosphate kinase (PPK2), a potent, polyphosphate-driven generator of GTP. Proc Natl Acad Sci USA 99:16684–16688

    CAS  PubMed  Google Scholar 

  • Jensen TE, Baxter M, Rachlin JW, Jani V (1982) Uptake of heavy-metals by Plectonema-boryanum (Cyanophyceae) into cellular-components, especially polyphosphate bodies—an X-ray-energy dispersive study. Environ Pollut 27:119–127

    CAS  Google Scholar 

  • Jiang L, Phillips TE, Hamm CA, Drozdowicz YM, Rea PA, Maeshima M, Rogers SW, Rogers JC (2001) The protein storage vacuole: a unique compound organelle. J Cell Biol 155:991–1002

    CAS  PubMed  Google Scholar 

  • Jolicoeur M, Germette S, Gaudette M, Perrier M, Becard G (1998) Intracellular pH in arbuscular mycorrhizal fungi. A symbiotic physiological marker. Plant Physiol 116:1279–1288

    CAS  PubMed  Google Scholar 

  • Joner E, van Aarle I, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226:199–210

    CAS  Google Scholar 

  • Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann NY Acad Sci 829:242–249

    CAS  PubMed  Google Scholar 

  • Keck K, Stich H (1957) The widespread occurrence of polyphosphate in lower plants. Ann Bot 21:611–619

    Google Scholar 

  • Kornberg A (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol 177:491–496

    CAS  PubMed  Google Scholar 

  • Kornberg A (2008) Abundant microbial inorganic polyphosphate, poly P kinase are underappreciated. Microbe 3:119

    Google Scholar 

  • Kornberg A, Fraley CD (2000) Inorganic polyphosphate: a molecular fossil come to life. ASM News 66:275–280

    Google Scholar 

  • Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–99

    CAS  PubMed  Google Scholar 

  • Kulaev I, Kulakovskaya T (2000) Polyphosphate and phosphate pump. Annu Rev Microbiol 54:709–734

    CAS  PubMed  Google Scholar 

  • Kulaev I, Vagabov V, Kulakovskaya T (1999) New aspects of inorganic polyphosphate metabolism and function. J Biosci Bioeng 88:111–129

    CAS  PubMed  Google Scholar 

  • Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The biochemistry of inorganic polyphosphates. Wiley, Chichester

    Google Scholar 

  • Kulaev IS, Vagabov VM, Kulakovskaya TV (2005) The functions of polyphosphates and polyphosphate- dependent enzymes. In: The biochemistry of inorganic polyphosphates, 2nd edn. Wiley, New York, pp 91–123

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    CAS  PubMed  Google Scholar 

  • Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737

    CAS  PubMed  Google Scholar 

  • Leyhausen G, Lorenz B, Zhu HUA, Geurtsen W, Bohnensack R, Müller WEG, Schröder HC (1998) Inorganic polyphosphate in human osteoblast-like cells. J Bone Miner Metab 13:803–812

    CAS  Google Scholar 

  • Long SR (2001) Genes and signals in the Rhizobium–legume symbiosis. Plant Physiol 125:69–72

    CAS  PubMed  Google Scholar 

  • Lorenz B, Müller WE, Kulaev IS, Schröder HC (1994) Purification and characterization of an exopolyphosphatase from Saccharomyces cerevisiae. J Biol Chem 269:22198–22204

    CAS  PubMed  Google Scholar 

  • Lorenz B, Batel R, Bachinski N, Müller WEG, Schröder HC (1995) Purification and characterization of two exopolyphosphatases from the marine sponge Tethya lyncurium. Biochim Biophys Acta Gen Subj 1245:17–28

    Google Scholar 

  • Lovett JL, Sibley LD (2003) Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J Cell Sci 116:3009–3016

    CAS  PubMed  Google Scholar 

  • Luo S, Vieira M, Graves J, Zhong L, Moreno SNJ (2001) A plasma membrane-type Ca2+-ATPase co-localizes with a vacuolar H+-pyrophosphatase to acidocalcisomes of Toxoplasma gondii. EMBO J 20:55–64

    CAS  PubMed  Google Scholar 

  • Mamun EA, Cantrill LC, Overall RL, Sutton BG (2005) Cellular organisation in meiotic and early post-meiotic rice anthers. Cell Biol Int 29:903–913

    CAS  PubMed  Google Scholar 

  • Marchesini N, Luo S, Rodrigues CO, Moreno SN, Docampo R (2000) Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. Biochem J 347:243–253

    CAS  PubMed  Google Scholar 

  • Marchesini N, Ruiz FA, Vieira M, Docampo R (2002) Acidocalcisomes are functionally linked to the contractile vacuole of Dictyostelium discoideum. J Biol Chem 277:8146–8153

    CAS  PubMed  Google Scholar 

  • Martínez-Muñoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309–20319

    PubMed  Google Scholar 

  • McGrath JW, Kulakova AN, Kulakova LA, Quon JP (2005) In vitro detection and characterization of a polyphosphate synthesising activity in the yeast Candida humicola G-1. Res Microbiol 156:485–491

    CAS  PubMed  Google Scholar 

  • McInerney P, Mizutani T, Shiba T (2006) Inorganic polyphosphate interacts with ribosomes and promotes translation fidelity in vitro and in vivo. Mol Microbiol 60:438–447

    CAS  PubMed  Google Scholar 

  • Meyer A (1904) Orientierende Untersuchungen ueber Verbreitung Morphologie, und Chemie des Volutins. Bot Z 62:113

    Google Scholar 

  • Montalvetti A, Rohloff P, Docampo R (2004) A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem 279:38673–38682

    CAS  PubMed  Google Scholar 

  • Moreno SN, Zhong L (1996) Acidocalcisomes in Toxoplasma gondii tachyzoites. Biochem J 313:655–659

    CAS  PubMed  Google Scholar 

  • Mosulen S, Dominguez MJ, Vigara J, Vilchez C, Guiraum A, Vega JM (2003) Metal toxicity in Chlamydomonas reinhardtii. Effect on sulfate and nitrate assimilation. Biomol Eng 20:199–203

    CAS  PubMed  Google Scholar 

  • Nagasaka S, Yoshimura E (2008) External iron regulates polyphosphate content in the acidophilic, thermophilic alga Cyanidium caldarium. Biol Trace Elem Res 125:286–289

    CAS  PubMed  Google Scholar 

  • Nakayama Y, Fujiu K, Sokabe M, Yoshimura K (2007) Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. Proc Natl Acad Sci USA 104:5883–5888

    CAS  PubMed  Google Scholar 

  • Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N (2003) Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. Fems Microb Ecol 44:253–259

    CAS  Google Scholar 

  • Nomura K, Kato J, Takiguchi N, Ohtake H, Kuroda A (2006) Inorganic polyphosphate stimulates Lon-mediated proteolysis of nucleoid proteins in Escherichia coli. Cell Mol Biol 52:22–29

    Google Scholar 

  • Ogawa N, DeRisi J, Brown PO (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11:4309–4321

    CAS  PubMed  Google Scholar 

  • Ohtomo R, Saito M (2005) Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus. New Phytol 167:571–578

    CAS  PubMed  Google Scholar 

  • Olbrich A, Hillmer S, Hinz G, Oliviusson P, Robinson DG (2007) Newly formed vacuoles in root meristems of barley and pea seedlings have characteristics of both protein storage and lytic vacuoles. Plant Physiol 145:1383–1394

    CAS  PubMed  Google Scholar 

  • Ortiz DF, Ruscitti T, Mccue KF, Ow DW (1995) Transport of metal-binding peptides by hmt1, a fission yeast ABC-type vacuolar membrane-protein. J Biol Chem 270:4721–4728

    CAS  PubMed  Google Scholar 

  • Palmer CP, Zhou X-L, Lin J, Loukin SH, Kung C, Saimi Y (2001) A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane. Proc Natl Acad Sci USA 98:7801–7805

    CAS  PubMed  Google Scholar 

  • Paz Y, Shimoni E, Weiss M, Pick U (2007) Effects of iron deficiency on iron binding and internalization into acidic vacuoles in Dunaliella salina. Plant Physiol 144:1407–1415

    CAS  PubMed  Google Scholar 

  • Pick U, Weiss M (1991) Polyphosphate hydrolysis within acidic vacuoles in response to amine-induced alkaline stress in the halotolerant alga Dunaliella salina. Plant Physiol 97:1234–1240

    CAS  PubMed  Google Scholar 

  • Pittman JK, Edmond C, Sunderland PA, Bray CM (2009) A cation-regulated and proton gradient-dependent cation transporter from Chlamydomonas reinhardtii has a role in calcium and sodium homeostasis. J Biol Chem 284:525–533

    CAS  PubMed  Google Scholar 

  • Preiss J, Ball K, Smith-White B, Iglesias A, Kakefuda G, Li L (1991) Starch biosynthesis and its regulation. Biochem Soc Trans 19:539–547

    CAS  PubMed  Google Scholar 

  • Ramos AC, Façanha AR, Feijó JA (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 178:177–188

    CAS  PubMed  Google Scholar 

  • Rao NN, Gomez-Garcia MAR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647

    CAS  PubMed  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotech 8:221–226

    CAS  PubMed  Google Scholar 

  • Reusch RN, Sadoff HL (1988) Putative structure and functions of a poly-b-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci USA 85:4176–4180

    CAS  PubMed  Google Scholar 

  • Reusch RN, Huang R, Kosk-Kosicka D (1997) Novel components and enzymatic activities of the human erythrocyte plasma membrane calcium pump. FEBS Lett 412:592–596

    CAS  PubMed  Google Scholar 

  • Rodrigues CO, Ruiz FA, Rohloff P, Scott DA, Moreno SNJ (2002) Characterization of isolated acidocalcisomes from Toxoplasma gondii tachyzoites reveals a novel pool of hydrolyzable polyphosphate. J Biol Chem 277:48650–48656

    CAS  PubMed  Google Scholar 

  • Rohloff P, Docampo R (2006) Ammonium production during hypo-osmotic stress leads to alkalinization of acidocalcisomes and cytosolic acidification in Trypanosoma cruzi. Mol Biochem Parasitol 150:249–255

    CAS  PubMed  Google Scholar 

  • Rohloff P, Docampo R (2008) A contractile vacuole complex is involved in osmoregulation in Trypanosoma cruzi. Exp Parasitol 118:17–24

    CAS  PubMed  Google Scholar 

  • Rohloff P, Rodrigues CO, Docampo R (2003) Regulatory volume decrease in Trypanosoma cruzi involves amino acid efflux and changes in intracellular calcium. Mol Biochem Parasitol 126:219–230

    CAS  PubMed  Google Scholar 

  • Rohloff P, Montalvetti A, Docampo R (2004) Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J Biol Chem 279:52270–52281

    CAS  PubMed  Google Scholar 

  • Ruiz FA, Rodrigues CO, Docampo R (2001a) Rapid changes in polyphosphate content within acidocalcisomes in response to cell growth, differentiation, and environmental stress in Trypanosoma cruzi. J Bio Chem 276:26114–26121

    CAS  Google Scholar 

  • Ruiz FA, Marchesini N, Seufferheld M, Govindjee, Docampo R (2001b) The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and axe similar to acidocalcisomes. J Biol Chem 276:46196–46203

    CAS  PubMed  Google Scholar 

  • Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryote. J Biol Chem 279:44250–44257

    CAS  PubMed  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    CAS  PubMed  Google Scholar 

  • Sasakawa N, Sharif M, Hanley MR (1995) Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem Pharmacol 50:137–146

    CAS  PubMed  Google Scholar 

  • Schröder HC, Lorenz B, Kurz L, Müller WE (1999) Inorganic polyphosphate in eukaryotes: enzymes, metabolism and function. Prog Mol Biol Transl Sci 23:45–81

    Google Scholar 

  • Seeds AM, Frederick JP, Tsui MMK, York JD (2007) Roles for inositol polyphosphate kinases in the regulation of nuclear processes and developmental biology. Adv Enzyme Regul 47:10–25

    CAS  PubMed  Google Scholar 

  • Seufferheld MJ, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 4(19):5867–5874

    Google Scholar 

  • Shaw SL, Long SR (2003) Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells. Plant Physiol 131:976–984

    CAS  PubMed  Google Scholar 

  • Shears SB (2004) How versatile are inositol phosphate kinases? Biochem J 377:265–280

    CAS  PubMed  Google Scholar 

  • Shiba T, Tsutsumi K, Yano H, Ihara Y, Kameda A, Tanaka K, Takahashi H, Munekata M, Rao NN, Kornberg A (1997) Inorganic polyphosphate and the induction of rpoS expression. Proc Natl Acad Sci USA 94:11210–11215

    CAS  PubMed  Google Scholar 

  • Shuhong L, Felix AR, Silvia NJM (2005) The acidocalcisome Ca2+-ATPase TgA1) of Toxoplasma gondii is required for polyphosphate storage, intracellular calcium homeostasis and virulence. Mol Microbiol 55:1034–1045

    Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    CAS  PubMed  Google Scholar 

  • Smith RD (2009) Plant-mycorrhiza percent infection as evidence of coupled metabolism. J Theor Biol 259:172–175

    PubMed  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular–arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39:221–244

    CAS  Google Scholar 

  • Stasolla C, Katahira R, Thorpe TA, Ashihara H (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160:1271–1295

    CAS  PubMed  Google Scholar 

  • Takanishi I, Ohtomo R, Hayatsu M, Saito M (2009) Short-chain polyphosphate in arbuscular mycorrhizal roots colonized by Glomus spp.: a possible phosphate pool for host plants. Soil Biol Biochem 41:1571–1573

    CAS  Google Scholar 

  • Tammenkoski M, Koivula K, Cusanelli E, Zollo M, Steegborn C, Baykov AA, Lahti R (2008) Human metastasis regulator protein h-prune is a short-chain exopolyphosphatasea. Biochem 47:9707–9713

    CAS  Google Scholar 

  • Tani C, Ohtomo R, Osaki M, Kuga Y, Ezawa T (2009) Polyphosphate-synthesizing activity in extraradical hyphae of an arbuscular mycorrhizal fungus: ATP-dependent but proton gradient-independent synthesis. Appl Environ Microbiol 75(22):7044–7050

    CAS  PubMed  Google Scholar 

  • Teun M, Harold JGM, Baster R, Heribert H, Wolfgang F, Dorothea B, Alan M (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154

    Google Scholar 

  • Tukaj Z, Bascik-Remisiewicz A, Skowronski T, Tukaj C (2007) Cadmium effect on the growth, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus: a study at low and elevated CO2 concentration. Environ Exp Bot 60:291–299

    CAS  Google Scholar 

  • van Aarle IM, Cavagnaro TR, Smith SE, Smith FA, Dickson S (2005) Metabolic activity of Glomus intraradices in Arum and Paris-type arbuscular mycorrhizal colonization. New Phytol 166:611–618

    PubMed  Google Scholar 

  • Wais RJ, Galera C, Oldroyd G, Catoira R, Penmetsa RV (2000) Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc Natl Acad Sci USA 97:13407–13412

    CAS  PubMed  Google Scholar 

  • Wang XM (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    CAS  PubMed  Google Scholar 

  • Weiss M, Bental M, Pick U (1991) Hydrolysis of polyphosphates and permeability changes in response to osmotic shocks in cells of the halotolerant alga Dunaliella. Plant Physiol 97:1241–1248

    CAS  PubMed  Google Scholar 

  • Wurst H, Shiba T, Kornberg A (1995) The gene for a major exopolyphosphatase of Saccharomyces cerevisiae. J Bacteriol 177:898–906

    CAS  PubMed  Google Scholar 

  • Yamagata Y, Watanabe H, Saitoh M, Namba T (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519

    CAS  PubMed  Google Scholar 

  • Ye Z, Weijun H, Lee Sam SK, Wenqing X (2005) Crystal structure of a polyphosphate kinase and its implications for polyphosphate synthesis. EMBO Rep 6:681–687

    Google Scholar 

  • York JD (2006) Regulation of nuclear processes by inositol polyphosphates. Biochim Biophys Acta Lipids Lipid Metab 1761:552–559

    CAS  Google Scholar 

  • Kuga Y, Saito K, Nayuki K, Peterson RL, Saito M (2008) Ultrastructure of rapidly frozen and freeze-substituted germ tubes of an arbuscular mycorrhizal fungus and localization of polyphosphate. New Phytol 178:189–200

    CAS  PubMed  Google Scholar 

  • Zhang H, Ishige K, Kornberg A (2002) A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc Natl Acad Sci USA 99:16678

    CAS  PubMed  Google Scholar 

  • Zhang H, Gomez-Garcia MR, Shi X, Rao NN, Kornberg A (2007) Polyphosphate kinase 1, a conserved bacterial enzyme, in a eukaryote, Dictyostelium discoideum, with a role in cytokinesis. Proc Natl Acad Sci USA 104:16486–16491

    CAS  PubMed  Google Scholar 

  • Zhou X-L, Batiza AF, Loukin SH, Palmer CP, Kung C, Saimi Y (2003) The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc Natl Acad Sci USA 100:7105–7110

    CAS  PubMed  Google Scholar 

  • Zhu Y, Lee SS, Xu W (2003) Crystallization and characterization of polyphosphate kinase from Escherichia coli. Biochem Biophys Res Commun 305:997–1001

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This material is based upon work supported by the Cooperative State Research, Education and Extension Service, US Department of Agriculture, under Project No. ILLU-802-389. We thank Donald P. Briskin and Jack A. Juvik for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfredo J. Seufferheld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seufferheld, M.J., Curzi, M.J. Recent Discoveries on the Roles of Polyphosphates in Plants. Plant Mol Biol Rep 28, 549–559 (2010). https://doi.org/10.1007/s11105-010-0187-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0187-z

Keywords

Navigation