Skip to main content
Log in

Analysis of Gene Expression Profile of Limonium bicolor under NaHCO3 Stress Using cDNA Microarray

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Limonium bicolor, a halophytic species of flowering plant, thrives in saline-alkali soil, demonstrating that it has developed an efficient saline-alkali resistance system and has potential utility as a source of genetic determinants for saline-alkali tolerance. In this study, complementary DNA microarrays containing 1,240 clones of L. bicolor were constructed to have a better view of transcript expression in L. bicolor during saline-alkali (NaHCO3)-induced stress. We obtained transcript profiles of L. bicolor in response to NaHCO3 for 6, 24, and 48 h. A total of 149 transcripts were differentially regulated at least once under the conditions studied. Among these, at least six different patterns of transcript regulation could be distinguished. There were 111, 45, and 51 transcripts that were differentially regulated by NaHCO3 stress for 6, 24, and 48 h, respectively. Of these, nearly 35% were putative novel or functionally unknown genes, and the remainders were involved in a variety of functional areas such as defense, transport, metabolism, and transcription regulation. The microarray analysis demonstrated the complexity of, and differences in, gene expression patterns resulting from different NaHCO3 stress times. This study provides informative preliminary data and a starting point for more in-depth analyses of saline-alkali tolerance in L. bicolor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CAP:

cold acclimation proteins

EST:

expressed sequence tags

LTP:

lipid transfer proteins

MT:

metallothionein

MTLP:

metallothionein-like protein

ROS:

reactive oxygen species

GST:

glutathione S-transferase

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

References

  • Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep. 1993;11:113–6.

    Article  CAS  Google Scholar 

  • Chao DY, Luo YH, Shi M, Luo D, Lin HX. Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res. 2005;15:796–810.

    Article  PubMed  CAS  Google Scholar 

  • Cho SH, Hoang QT, Kim YY, Shin HY, Ok SH, Bae JM, et al. Proteome analysis of gametophores identified a metallothionein involved in various abiotic stress responses in Physcomitrella patens. Plant Cell Rep. 2006;25:475–88.

    Article  PubMed  CAS  Google Scholar 

  • de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics. 2004;20:1453–4.

    Article  PubMed  Google Scholar 

  • Fu C, Miao W. Cloning and characterization of a new multi-stress inducible metallothionein gene in Tetrahymena pyriformis. Protist. 2006;157:193–203.

    Article  PubMed  CAS  Google Scholar 

  • Gasmi A, Srairi N, Guermazi S, Karoui H, El Ayeb M. Biological activity of a lectin-like protein purified from Vipera lebetina venom. Toxicon. 1998;36:1738.

    Google Scholar 

  • Gonorazky AG, Regente MC, Canal LDL. Stress induction and antimicrobial properties of a lipid transfer protein in germinating sunflower seeds. J Plant Physiol. 2005;162:618–24.

    Article  PubMed  CAS  Google Scholar 

  • Jang CS, Kim DS, Bu SY, Kim JB, Lee SS, Kim JY, et al. Isolation and characterization of lipid transfer protein (LTP) genes from a wheat–rye translocation line. Plant Cell Rep. 2002;20:961–6.

    Article  CAS  Google Scholar 

  • Jin H, Plaha P, Park JY, Hong CP, Lee IS, Yang ZH, et al. Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil. Plant Sci. 2006;170:1081–6.

    Article  CAS  Google Scholar 

  • Jones JT, Mullet JE. A salt-and dehydration-inducible pea gene, Cyp15a, encodes a cell-wall protein with sequence similarity to cysteine proteases. Plant Mol Biol. 1995;28:1055–65.

    Article  PubMed  CAS  Google Scholar 

  • Ledoigt G, Griffaut B, Debiton E, Vian C, Mustel A, Evray G, et al. Analysis of secreted protease inhibitors after water stress in potato tubers. Int J Biol Macromol. 2006;38:268–71.

    Article  PubMed  CAS  Google Scholar 

  • Liu XJ, Huang BB, Lin J, Fei J, Chen ZH, Pang YZ, et al. A novel pathogenesis-related protein (SsPR10) from Solanum surattense with ribonucleolytic and antimicrobial activity is stress-and pathogen-inducible. J Plant Physiol. 2006;163:546–56.

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  • Martínez M, Rubio-Somoza I, Carbonero P, Díaz I. A cathepsin B-like cysteine protease gene from Hordeum vulgare (gene CatB) induced by GA in aleurone cells is under circadian control in leaves. J Exp Bot. 2003;384:951–9.

    Article  Google Scholar 

  • Moons A. Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett. 2003;553:427–32.

    Article  PubMed  CAS  Google Scholar 

  • Neven LG, Haskell DW, Hofig A, Li QB, Guy CL. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol. 1993;21:291–305.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, et al. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot. 2007;58:507–20.

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro C, Kehr J, Ricardo CP. Effect of water stress on lupin stem protein analysed by two-dimensional gel electrophoresis. Planta. 2005;221:716–28.

    Article  PubMed  CAS  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol. 2000;41:1229–34.

    Article  PubMed  CAS  Google Scholar 

  • Roxas VP, Smith RK Jr, Allen ER, Allen RD. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol. 1997;15:988–91.

    Article  PubMed  CAS  Google Scholar 

  • Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R, et al. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep. 2005;24:216–24.

    Article  PubMed  CAS  Google Scholar 

  • Ueda A, Kathiresan A, Bennett J, Takabe T. Comparative transcriptome analyses of barley and rice under salt stress. Theor Appl Genet. 2006;112:1286–94.

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol. 2007;63:609–23.

    Article  PubMed  CAS  Google Scholar 

  • Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, et al. Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol. 2006;140:1437–50.

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Robertson AJ, Liu X, Zheng P, Wilen RW, Nesbitt NT, et al. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis). J Plant Physiol. 2004;161:449–58.

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Wan F, Dutta S, Welsh S, Liu ZH, Freundt E, et al. Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci U S A. 2006;103:4952–7.

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol. 2003;6(5):441–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by National Natural Science Foundation of China (No. 30571509) and the Key Research Projects of Heilongjiang Province (GB06B303-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifeng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Ma, H., Liu, G. et al. Analysis of Gene Expression Profile of Limonium bicolor under NaHCO3 Stress Using cDNA Microarray. Plant Mol Biol Rep 26, 241–254 (2008). https://doi.org/10.1007/s11105-008-0037-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-008-0037-4

Keywords

Navigation