Skip to main content
Log in

Rare earth element (hyper)accumulation in some Proteaceae from Queensland, Australia

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Proteaceae species strongly acidify their rhizosphere to increase soil phosphorus (P) availability, which also inadvertently increases the availability of other elements, such as manganese and rare earth elements (REE). This study aimed to investigate REE (hyper) accumulation in the Proteaceae genus Helicia from Queensland, Australia, from a systematic assessment of REE concentrations in herbarium specimens and verification with field collected samples.

Methods

Herbarium X-ray fluorescence (XRF) scanning (using yttrium as a proxy for REEs) was undertaken on selected Helicia species (Proteaceae) at the Queensland Herbarium, followed by Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis and field collection of H. glabriflora samples to confirm the XRF findings.

Results

The herbarium XRF analysis revealed highly anomalous REE concentrations in some Helicia species, reaching ~ 1300 µg Y g-1 in H. australasica and H. glabriflora. The ICP-AES analysis of the herbarium specimens revealed total REE concentrations (REE) of up to 2300 µg g-1 in H. australasica and H. glabriflora, with relatively higher light REEs (~ 70%) and yttrium (~ 20%) concentrations, compared to heavy REEs (~ 10%). The field collected H. glabriflora material had relatively higher total REE concentrations in the mature leaves (~ 850 µg REE g-1) and stems (~ 675 µg REE g-1), compared to young leaves (~ 130 µg REE g-1), roots (~ 220 µg REE g-1) and soil (~ 90 µg REE g-1).

Conclusion

The discovery of REE (hyper)accumulation in these Helicia species suggests that the Proteaceae family may host several other REE hyperaccumulators that are hitherto undiscovered. This calls for systematic assessment of the Proteaceae using the same approach as used in this study. The findings have potential implications for (i) discovery of REE hyperaccumulator plants, (ii) investigation of REE uptake and accumulation in plants and (iii) biogeochemical exploration of buried REE ore deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abubakari F, Nkrumah PN, Fernando DR, Erskine PD, Echevarria G, van der Ent A (2022) Manganese accumulation and tissue-level distribution in the australian hyperaccumulator Gossia bidwillii (Myrtaceae). Trop Plant Biology 15:1–11

    Article  CAS  Google Scholar 

  • Abubakari F, Nkrumah PN, Erskine PD, Brown GK, Fernando DR, Echevarria G, van der Ent A (2021a) Manganese (hyper) accumulation within australian Denhamia (Celastraceae): an assessment of the trait and manganese accumulation under controlled conditions. Plant Soil 63:205–223

    Article  Google Scholar 

  • Abubakari F, Nkrumah PN, Fernando DR, Brown GK, Erskine PD, Echevarria G, van der Ent A (2021b) Incidence of hyperaccumulation and tissue-level distribution of manganese, cobalt and zinc in the genus Gossia (Myrtaceae). Metallomics 3(4):mfab008

  • Belloeil C, Jouannais P, Malfaisan C, Reyes Fernández R, Lopez S, Navarrete Gutierrez DM, Maeder-Pras S, Villanueva P, Tisserand R, Gallopin M, Alfonso-Gonzalez D (2021) The X-ray fluorescence screening of multiple elements in herbarium specimens from the neotropical region reveals new records of metal accumulation in plants. Metallomics 13:mfab045

    Article  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Brown PH, Rathjien AH, Graham RD, Tribe DE (1990) Rare earth elements in biological systems. In: Handbook on the physics and chemistry of rare earths. Geschneider, K.A. and Jr. L. Eyring, (Eds.) Elsevier Science Publisher B. V., New York, vol 13:423–453

  • Chandler R, Spandler C (2020) The igneous petrogenesis and rare metal potential of the peralkaline volcanic complex of the southern peak range, Central Queensland, Australia. Lithos. https://doi.org/10.1016/j.lithos.2020.105386

  • Corzo Remigio A, Nkrumah PN, Pošćić F, Edraki M, Baker AJM, van der Ent A (2022) Thallium accumulation and distribution in Silene latifolia (Caryophyllaceae) grown in hydroponics. Plant Soil. https://doi.org/10.1007/s11104-022-05575-2

  • Delgado M, Valle S, Barra PJ, Reyes-Díaz M, Zúñiga-Feest A (2019) New aluminum hyperaccumulator species of the Proteaceae family from southern South America. Plant Soil 444:475–487

    Article  CAS  Google Scholar 

  • Ding S, Liang T, Zhang C, Yan J, Zhang Z (2005) Accumulation and fractionation of rare earth elements (REEs) in wheat: controlled by phosphate precipitation, cell wall absorption and solution complexation. J Exp Bot 56:2765–2775

    Article  CAS  PubMed  Google Scholar 

  • Do C, Abubakari F, Corzo Remigio A, Brown GK, Casey LW, Burtet-Sarramegna V, Gei V, Erskine PD, van der Ent A (2020) A preliminary survey of nickel, manganese and zinc (hyper) accumulation in the flora of Papua New Guinea from herbarium X-ray fluorescence scanning. Chemoecology 30:1–3

  • Gei V, Isnard S, Erskine PD, Echevarria G, Fogliani B, Jaffré T, van der Ent A (2020) A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Bot J Linn Soc 194:1–22

    Article  Google Scholar 

  • Goodenough KM, Wall F, Merriman D (2018) The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat Resour Res 27:201–216

    Article  CAS  Google Scholar 

  • Grosjean N, Blaudez D, Chalot M, Gross EM, Le Jean M (2019a) Identification of new hardy ferns that preferentially accumulate light rare earth elements: a conserved trait within fern species. Environ Chem 17:191–200

    Article  Google Scholar 

  • Grosjean N, Le Jean M, Berthelot C, Chalot M, Gross EM, Blaudez D (2019b) Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus. Sci Rep 9:1–12

    Article  Google Scholar 

  • Harvey MA, Erskine PD, Harris HH, Brown GK, Pilon-Smits EA, Casey LW, Echevarria G, van der Ent A (2020) Distribution and chemical form of selenium in Neptunia amplexicaulis from Central Queensland, Australia. Metallomics 12:514–527

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Haneklaus S, Sparovek G, Schnug E (2006) Rare earth elements in soils. Commun Soil Sci Plant Anal 37:1381–1420

    Article  CAS  Google Scholar 

  • Jally B, Laubie B, Chour Z, Muhr L, Qiu R, Morel JL, Tang Y, Simonnot MO (2021) A new method for recovering rare earth elements from the hyperaccumulating fern Dicranopteris linearis from China. Miner Eng 166:106879. https://doi.org/10.1016/j.mineng.2021.106879

    Article  CAS  Google Scholar 

  • Jansen S, Broadley MR, Robbrecht E, Smets E (2002) Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68:235–269

    Article  Google Scholar 

  • Kataoka T, Stekelenburg A, Nakanishi TM, Delhaize E, Ryan PR (2002) Several lanthanides activate malate efflux from roots of aluminium-tolerant wheat. Plant Cell Environ 25:453–460

    Article  CAS  Google Scholar 

  • Lambers H, Wright IJ, Guilherme Pereira C, Bellingham PJ, Bentley LP, Boonman A, Cernusak LA, Foulds W, Gleason SM, Gray EF, Hayes PE (2021) Leaf manganese concentrations as a tool to assess belowground plant functioning in phosphorus-impoverished environments. Plant Soil 461:43–61

  • Lintern M, Anand R, Ryan C, Paterson D (2013) Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits. Nat Commun 4:1–8

    Article  Google Scholar 

  • Liu C, Yuan M, Liu W-S, Guo M-N, Zheng H-X, Huot H, Jally B, Tang Y-T, Laubie B, Simonnot M-O, Morel JL, Qiu R-L (2020) Element case stduies: rare earth elements. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL (eds) “Agromining: Farming for Metals” Mineral Resource Reviews series, 2nd edn. Springer International Publishing, pp 471–483

  • McLennan S (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin B, McKay G (eds) Geochemistry and mineralogy of rare earth elements. Mineral. Soc. Am, Washington, pp 169–225

    Chapter  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2. https://doi.org/10.1029/2000GC000109

  • Nicolls OW, Provan DM, Cole MM, Tooms JS (1965) Geobotany and geochemistry in mineral exploration in the Dugald River Area, Cloncurry District, Australia. Trans Inst Min Metall 74:695–799

    CAS  Google Scholar 

  • Nkrumah P, Echevarria G, Erskine PD, van der Ent A (2018a) Nickel hyperaccumulation in Antidesma montis-silam: from herbarium discovery to collection in the native habitat. Ecol Res 33:675–685

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, van der Ent A (2018b) Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. Sci Rep 8:9659. https://doi.org/10.1038/s41598-018-26859-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purwadi I, Gei V, Erskine PD, Echevarria G, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, van der Ent A (2020) Tools for the discovery of hyperaccumulator plant species in the field and in the herbarium. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL (eds) “Agromining: Farming for Metals” Mineral Resource Reviews series, 2nd edn. Springer International Publishing, pp 183–195

  • Purwadi I, Nkrumah PN, Paul AL, van der Ent A (2021) Uptake of yttrium, lanthanum and neodymium in Melastoma malabathricum and Dicranopteris linearis from Malaysia. Chemoecology 31:335–342

    Article  CAS  Google Scholar 

  • Purwadi I, Casey LW, Erskine PD, van der Ent A (2022a) X-ray fluorescence analysis for analysis of the metallome in herbarium specimens. Plant Methods. https://doi.org/10.1186/s13007-022-00958-z

  • Purwadi I, Abubakari F, Brown GK, Erskine PD, van der Ent A (2022b) A systematic assessment of the incidence of trace element hyperaccumulation in the Queensland (Australia) flora using X-ray fluorescence Spectroscopy. Aust J Bot (Revised)

  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018) A global database for hyperaccumulator plants of metal and metalloid trace elements. New Phytol 218:407–411

    Article  PubMed  Google Scholar 

  • Robinson WO, Bastron H, Murata KJ (1958) Biogeochemistry of the rare-earth elements with particular reference to hickory trees. Geochim Cosmochim Acta 14:55–67

    Article  CAS  Google Scholar 

  • Robinson WO, Whetstone R, Scribner BF (1938) The presence of rare-earths in hickory leaves. Science 87:470–471

    Article  CAS  PubMed  Google Scholar 

  • Ryan CG (2000) Quantitative trace element imaging using PIXE and the nuclear microprobe. Int J Imaging Syst Technol 11:219–230

    Article  Google Scholar 

  • Ryan CG, Etschmann BE, Vogt S, Maser J, Harland CL, Van Achterbergh E, Legnini D (2005) Nuclear microprobe - synchrotron synergy: towards integrated quantitative real-time elemental imaging using PIXE and SXRF. Nuclear instruments and methods in physics research. Sect B: Beam Interact Mater Atoms 231:183–188

    CAS  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    Article  CAS  Google Scholar 

  • Thomas WA (1975) Accumulation of rare earths and circulation of cerium by mockernut hickory trees. Can J Bot 53:1159–1165

    Article  CAS  Google Scholar 

  • Tyler G (2004) Rare earth elements in soil and plant systems – A review. Plant Soil 267:191–206

    Article  CAS  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

  • van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybylowicz J, Przybylowicz WJ, Barnabas A, Harris HH (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:1–21

    Google Scholar 

  • van der Ent A, Echevarria G, Pollard AJ, Erskine PD (2019a) X-ray fluorescence ionomics of herbarium collections. Sci Rep 9:1–5

    Google Scholar 

  • van der Ent A, Ocenar A, Tisserand R, Sugau JB, Echevarria G, Erskine PD (2019b) Herbarium X-ray fluorescence screening for nickel, cobalt and manganese hyperaccumulator plants in the flora of Sabah (Malaysia, Borneo Island). J Geochem Explor 202:49–58

    Article  Google Scholar 

  • van der Ent A, Pollard AJ, Echevarria G, Abubakari F, Erskine PD, Baker AJM, Reeves RD (2020a) Exceptional uptake and accumulation of chemical elements in plants: extending the hyperaccumulation paradigm. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M-O, Morel JL (eds) “Agromining: Farming for Metals” Mineral Resource Reviews series, 2nd edn. Springer International Publishing, pp 99–131

  • van der Ent A, Kopittke PM, Paterson DJ, Casey LW, Nkrumah PN (2020b) Distribution of aluminium in hydrated leaves of tea (Camellia sinensis) using synchrotron- and laboratory-based X-ray fluorescence microscopy. Metallomics 12:1062–1069

    Article  PubMed  Google Scholar 

  • Vaughan J, Tungpalan K, Parbhakar-Fox A, Fu W, Gagen EJ, Nkrumah PN, Southam G, van der Ent A, Erskine PD, Gow P, Valenta R (2021) Toward closing a loophole: recovering rare earth elements from uranium metallurgical process tailings. JOM 73:39–53

    Article  CAS  Google Scholar 

  • Wang Y, Kanipayor R, Brindle ID (2014) Rapid high-performance sample digestion for ICP determination by ColdBlock™ digestion: part 1 environmental samples. J Anal At Spectrom 29:162–168

  • Wei Z, Hong F, Yin M, Li H, Hu F, Zhao G, Wong JW (2005) Structural differences between light and heavy rare earth elment binding chlorophylls in naturally grown fern Dicranopteris linearis. Biol Trace Elem Res 106:279–297

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Yin M, Zhang X, Hong FS, Li B, Tao Y, Zhao GW, Yan CH (2001) Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environ Pollut 114:345–355

    Article  CAS  PubMed  Google Scholar 

  • Wiche O, Kummer N-A, Heilmeier H (2016) Interspecific root interactions between white lupin and barley enhance the uptake of rare earth elements (REEs) and nutrients in shoots of barley. Plant Soil 402:235–245

    Article  CAS  Google Scholar 

  • Wiche O, Pourret O, Lambers H (2022) Rare earth elements as potential tracers of carboxylate-based plant nutrition strategies. Copernicus Meetings, EGU General Assembly 2022, Vienna. https://doi.org/10.5194/egusphere-egu22-3674

  • Wood BW, Grauke LJ (2011) The rare-earth metallome of Pecan and other Carya. J Am Soc Hortic Sci 136:389–398

    Article  CAS  Google Scholar 

  • Yuan M, Liu C, Liu WS, Guo MN, Morel JL, Huot H, Yu HJ, Tang YT, Qiu RL (2018) Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China. Int J Phytoremediation 20:415–423

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Director of the Queensland Herbarium (Department of Environment and Science, Toowong, Australia) for permission to access the herbarium collection for conducting XRF measurements, and Gillian Brown for support with this project. This research was funded by the Queensland Department of Natural Resources, Mines and Energy project ‘‘Extracting Queensland’s Rare Earth Elements Sustainably”. Imam Purwadi is the recipient of an Australian Government Research Training Program Scholarship at The University of Queensland, Australia. This work was supported by the French National Research Agency through the national program “Investissements d’avenir” (ANR-10-LABX-21 - RESSOURCES21).

Author information

Authors and Affiliations

Authors

Contributions

AVDE, PNN, IP and PDE designed and conducted the study. IP undertook the XRF scanning. AVDE, PNN, PDE undertook the field work. PNN undertook the chemical analysis of the samples. AVDE, PNN, IP and PDE wrote the manuscript.

Corresponding author

Correspondence to Antony van der Ent.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest relevant to the content of this manuscript.

Additional information

Responsible Editor: Hans Lambers.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Ent, A., Nkrumah, P.N., Purwadi, I. et al. Rare earth element (hyper)accumulation in some Proteaceae from Queensland, Australia. Plant Soil 485, 247–257 (2023). https://doi.org/10.1007/s11104-022-05805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05805-7

Keywords

Navigation