Skip to main content
Log in

Transcriptomic analyses reveal the effect of nitric oxide on the lateral root development and growth of mangrove plant Kandelia obovata

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Kandelia obovata, a dominant mangrove species in China, produces complex buttress roots and prop roots in intertidal wetlands where high quantities of nitric oxide (NO) are produced by reducing sediments. NO, a key signaling molecule, participates in an array of plant physiological and developmental processes. However, it is unclear whether NO functions in K. obovata root system establishment.

Methods

Here, we used a transcriptomic approach to investigate the potential role of NO in the regulation of K. obovata lateral root development and growth. Transcript profiles and bioinformatics analyses were used to characterize potential regulatory mechanisms.

Results

Application of exogenous sodium nitroprusside (SNP, an NO donor) enhanced K. obovata lateral root development and growth in a dose-dependent manner. Furthermore, the effects of SNP were abolished by the addition of cPTIO (NO scavenger). RNA-seq analysis identified 1,593 differentially expressed genes (DEGs), of which 646 and 947 were up- and down-regulated in roots treated with NO donor. Functional annotation analysis demonstrated that the starch and sucrose pathway was significantly induced in response to NO. A suite of DEGs involved in hormone signal transduction and cell wall metabolism was also differentially regulated by NO. Taken together, our results suggest that a complex interaction between energy metabolism, multiple hormone signaling pathways, and cell wall biosynthesis is required for the NO regulation on lateral root development and growth in mangrove plant K. obovata.

Conclusion

NO appears to contribute to the formation of the unique root system of mangrove plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sanchez-Vicente I, Nambara E, Lorenzo O (2015) S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 6:8669

    CAS  PubMed  Google Scholar 

  • Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306:1513–1515

    CAS  PubMed  Google Scholar 

  • Arioli T, Peng LC, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    CAS  PubMed  Google Scholar 

  • Bai SL, Li MM, Yao T, Wang H, Zhang YC, Xiao LH, Wang JZ, Zhang Z, Hu Y, Liu WZ, He YK (2012) Nitric oxide restrain root growth by DNA damage induced cell cycle arrest in Arabidopsis thaliana. Nitric Oxide 26:54–60

    CAS  PubMed  Google Scholar 

  • Bao F, Shen JJ, Brady SR, Muday GK, Asami T, Yang ZB (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 135:1864–1864

    CAS  Google Scholar 

  • Bassa C, Mila I, Bouzayen M, Audran-Delalande C (2012) Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato. Plant Cell Physiol 53:1583–1595

    CAS  PubMed  Google Scholar 

  • Baumberger N, Steiner M, Ryser U, Keller B, Ringli C (2003) Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development. Plant J 35:71–81

    CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (1999) Is nitric oxide toxic or protective? Trends Plant Sci 4:299–300

    CAS  PubMed  Google Scholar 

  • Böhm FMLZ, Ferrarese MDLL, Zanardo DIL, Magalhaes JR, Ferrarese-Filho O (2010) Nitric oxide affecting root growth, lignification and related enzymes in soybean seedlings. Acta Physiol Plant 32:1039–1046

    Google Scholar 

  • Burget EG, Reiter WD (1999) The mur4 mutant of Arabidopsis is partially defective in the de novo synthesis of uridine diphospho L-arabinose. Plant Physiol 121:383–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns JRK, Mahong B, Baiya S, Jeon JS (2015) beta-Glucosidases: Multitasking, moonlighting or simply misunderstood? Plant Sci 241:246–259

    Google Scholar 

  • Chen YQ, Lan CY, Wang YS, Nora FYT (1995) Anatomical structures and ecological adaptations of mangrove propagules. Acta Sci Nat Univ Sunyatseni 34:70–75

    Google Scholar 

  • Chen J, Wu FH, Xiao Q, Yang ZH, Huang SK, Wang JA, Wu YG, Dong XJ, Pei ZM, Zheng HL (2010a) Diurnal variation of nitric oxide emission flux from a mangrove wetland in Zhangjiang River Estuary, China. Estuar Coast Shelf S 90:212–220

    CAS  Google Scholar 

  • Chen J, Xiao Q, Wu FH, Dong XJ, He JX, Pei ZM, Zheng HL (2010b) Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+-ATPase and Na+/H+ antiporter under high salinity. Tree Physiol 30:1570–1585

    CAS  PubMed  Google Scholar 

  • Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, Dong XJ, He JX, Pei ZM, Zheng HL (2011) Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J Exp Bot 62:4481–4493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TS, Yuan F, Song J, Wang BS (2016) Nitric oxide participates in waterlogging tolerance through enhanced adventitious root formation in the euhalophyte Suaeda salsa. Func Plant Biol 43:244–253

    CAS  Google Scholar 

  • Chou YH, Pogorelko G, Young ZT, Zabotina OA (2015) Protein-protein interactions among xyloglucan-synthesizing enzymes and formation of golgi-localized multiprotein complexes. Plant Cell Physiol 56:255–267

    CAS  PubMed  Google Scholar 

  • Chung Y, Choe S (2013) The regulation of brassinosteroid biosynthesis in Arabidopsis. Crit Rev Plant Sci 32:396–410

    Google Scholar 

  • Claeyssen E, Rivoal J (2007) Isozymes of plant hexokinase: Occurrence, properties and functions. Phytochemistry 68:709–731

    CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588

    CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2008) Nitric oxide: an active nitrogen molecule that modulates cellulose synthesis in tomato roots. New Phytol 179:386–396

    CAS  PubMed  Google Scholar 

  • de Godoy F, Bermudez L, Lira BS, de Souza AP, Elbl P, Demarco D, Alseekh S, Insani M, Buckeridge M, Almeida J, Grigioni G, Fernie AR, Carrari F, Rossi M (2013) Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot 64:2449–2466

    PubMed  PubMed Central  Google Scholar 

  • de Jong M, Wolters-Arts M, Schimmel BCJ, Stultiens CLM, de Groot PFM, Powers SJ, Tikunov YM, Bovy AG, Mariani C, Vriezen WH (2015) Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. J Exp Bot 66:3405–3416

    PubMed  PubMed Central  Google Scholar 

  • De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang HM (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555

    PubMed  Google Scholar 

  • Deng W, Yang YW, Ren ZX, Audran-Delalande C, Mila I, Wang XY, Song HL, Hu YH, Bouzayen M, Li ZG (2012) The tomato SlIAA15 is involved in trichome formation and axillary shoot development. New Phytol 194:379–390

    CAS  PubMed  Google Scholar 

  • Draeger C, Fabrice TN, Gineau E, Mouille G, Kuhn BM, Moller I, Abdou MT, Frey B, Pauly M, Bacic A, Ringli C (2015) Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biol 15:155

    PubMed  PubMed Central  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    CAS  PubMed  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40:1–11

    CAS  Google Scholar 

  • Galina A, da Silva WS (2000) Hexokinase activity alters sugar-nucleotide formation in maize root homogenates. Phytochemistry 53:29–37

    CAS  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. P Natl Acad Sci USA 99:15898–15903

    CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    CAS  PubMed  Google Scholar 

  • Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ, Chory J, Savaldi-Goldstein S (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839−848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    CAS  PubMed  Google Scholar 

  • Hanashiro I, Ikeda I, Honda O, Kawasaki S, Fujimori K, Takeda Y (2004) Molecular structures and some properties of starches from propagules of mangrove species. J Exp Mar Biol Ecol 309:141–154

    CAS  Google Scholar 

  • He YK, Tang RH, Hao Y, Stevens RD, Cook CW, Am SM, Jing LF, Yang ZG, Chen LG, Guo FQ, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    CAS  PubMed  Google Scholar 

  • He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science. 307:1634–1638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hocq L, Senechal F, Lefebvre V, Lehner A, Domon JM, Mollet JC, Dehors J, Pageau K, Marcelo P, Guerineau F, Kolsek K, Mercadante D, Pelloux J (2017) Combined experimental and computational approaches reveal distinct pH dependence of pectin methylesterase inhibitors. Plant Physiol 173:1075–1093

    CAS  PubMed  Google Scholar 

  • Hsieh HL, Okamoto H, Wang M, Ang LH, Matsui M, Goodman H, Deng XW (2000) FlN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream reg-ulator COPlin light control of Arabidopsis development. Genes Devel 14:1958–1970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang AX, She XP, Huang C, Song TS (2007) The dynamic distribution of NO and NADPH-diaphorase activity during IBA-induced adventitious root formation. Physiol Plant 130:240–249

    CAS  Google Scholar 

  • Huang J, Wei HL, Li LB, Yu SX (2018) Transcriptome analysis of nitric oxide-responsive genes in upland cotton (Gossypium hirsutum). PLoS ONE 13:e0192367

    PubMed  PubMed Central  Google Scholar 

  • Hussain A, Mun BG, Imran QM, Lee SU, Adamu TA, Shahid M, Kim KM, Yun BW (2016) Nitric oxide mediated transcriptome profiling reveals activation of multiple regulatory pathways in Arabidopsis thaliana. Front Plant Sci 7:975

    PubMed  PubMed Central  Google Scholar 

  • Lee C, Teng Q, Zhong RQ, Ye ZH (2012) Arabidopsis GUX proteins are glucuronyltransferases responsible for the addition of glucuronic acid side chains onto xylan. Plant Cell Physiol 53:1204–1216

    CAS  PubMed  Google Scholar 

  • Li GF, Ma JJ, Tan M, Mao JP, An N, Sha GL, Zhang D, Zhao CP, Han MY (2016) Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root development and growth of grafted apple. BMC Genomics 17:150

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Huang WL, Xiong C, Zhao J (2018) Transcriptome analysis reveals the role of nitric oxide in Pleurotus eryngii responses to Cd stress. Chemosphere 201:294–302

  • Libourel IGL, Bethke PC, De Michele R, Jones RL (2006) Nitric oxide gas stimulates germination of dormant Arabidopsis seeds: use of a flow-through apparatus for delivery of nitric oxide. Planta 223:813–820

    CAS  PubMed  Google Scholar 

  • Lin P (1999) Mangrove ecosystem in China. Science Press, Beijing

    Google Scholar 

  • Lin YC, Yang L, Paul M, Zu YG, Tang ZH (2013) Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: Evidence for the involvement of nitric oxide simulated by sodium nitroprusside. Plant Physiol Bioch 73:211–218

    CAS  Google Scholar 

  • Liu W, Li RJ, Han TT, Cai W, Fu ZW, Lu YT (2015) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol 168:343–356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  • Mao XZ, Cai T, Olyarchuk JG, Wei LP (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    CAS  PubMed  Google Scholar 

  • Mata CG, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    CAS  PubMed Central  Google Scholar 

  • Miyata K, Kawaguchi M, Nakagawa T (2013) Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus. Plant Cell Physiol 54:1469–1477

    CAS  PubMed  Google Scholar 

  • Moro CF, Gaspar M, da Silva FR, Pattathil S, Hahn MG, Salgado I, Braga MR (2017) S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana. New Phytol 213:1771–1786

    CAS  PubMed  Google Scholar 

  • Mortimer JC, Miles GP, Brown DM, Zhang ZN, Segura MP, Weimar T, Yu XL, Seffen KA, Stephens E, Turner SR, Dupree P (2010) Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. P Natl Acad Sci USA 107:17409–17414

    CAS  Google Scholar 

  • Naidoo G, Rogalla H, vonWillert DJ (1997) Gas exchange responses of a mangrove species, Avicennia marina, to waterlogged and drained conditions. Hydrobiologia 352:39–47

    CAS  Google Scholar 

  • Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu EL, Shang XG, Cheng CZ, Bao JH, Zeng YD, Cai CP, Du XM, Guo WZ (2015) Comprehensive analysis of the COBRA-Like (COBL) gene family in Gossypium identifies two COBLs potentially associated with fiber quality. PLoS ONE 10:e0145725

    PubMed  PubMed Central  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2004) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    Google Scholar 

  • Pan CL, Yao SC, Xiong WJ, Luo SZ, Wang YL, Wang AQ, Xiao D, Zhan J, He LF (2017) Nitric oxide inhibits Al-induced programmed cell death in root tips of peanut (Arachis hypogaea L.) by affecting physiological properties of antioxidants systems and cell wall. Front Physiol 8:1037

    PubMed  PubMed Central  Google Scholar 

  • Pan DZ, Wang LX, Tan FL, Lu S, Lv XJ, Zaynab M, Cheng CL, Abubakar YS, Chen SP, Chen W (2018) Phosphoproteomics unveils stable energy supply as key to flooding tolerance in Kandelia candel. J Proteomics 176:1–12

    CAS  PubMed  Google Scholar 

  • Park CH, Roh J, Youn JH, Son SH, Park JH, Kim SY, Kim TW, Kim SK (2018) Arabidopsis ACC oxidase 1 coordinated by multiple signals mediates ethylene biosynthesis and is involved in root development. Mol Cells 41:923–932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. P Natl Acad Sci USA 93:12637–12642

    CAS  Google Scholar 

  • Pieslinger AM, Hoepflinger MC, Tenhaken R (2010) Cloning of glucuronokinase from Arabidopsis thaliana, the last missing enzyme of the myo-inositol oxygenase pathway to nucleotide sugars. J Biol Chem 285:2902

    CAS  PubMed  Google Scholar 

  • Rautengarten C, Ebert B, Herter T, Petzold CJ, Ishii T, Mukhopadhyay A, Usadel B, Scheller HV (2011) The interconversion of UDP-arabinopyranose and UDP-arabinofuranose is indispensable for plant development in Arabidopsis. Plant Cell 23:1373–1390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren H, Gray WM (2015) SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol Plant 8:1153–1164

    CAS  PubMed  Google Scholar 

  • Ren RJ, Wang P, Wang LN, Su JP, Sun LJ, Sun Y, Chen DF, Chen XW (2020) Os4BGlu14, a monolignol β-Glucosidase, negatively afects seed longevity by infuencing primary metabolism in rice. Plant Mol Biol 104:513–527

    CAS  PubMed  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roeckel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143

    CAS  Google Scholar 

  • Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139:1393–1409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67

    CAS  PubMed  Google Scholar 

  • Seifert GJ (2004) Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol 7:277–284

    CAS  PubMed  Google Scholar 

  • Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T (2000) Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J 23:481–488

    CAS  PubMed  Google Scholar 

  • Shen ZJ, Chen J, Ghoto K, Hu WJ, Gao GF, Luo MR, Li Z, Simon M, Zhu XY, Zheng HL (2018) Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. Tree Physiol 38:1605–1622

    CAS  PubMed  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant-cell walls. Science 306:2206–2211

    CAS  PubMed  Google Scholar 

  • Stamm P, Kumar PP (2013) Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light. Plant cell rep 32:759–769

    CAS  PubMed  Google Scholar 

  • Sun HW, Bi Y, Tao JY, Huang SJ, Hou MM, Xue R, Liang ZH, Gu PY, Yoneyama K, Xie XN, Shen QR, Xu GH, Zhang YL (2016) Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice. Plant Cell Environ 39:1473–1484

    CAS  PubMed  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Dijken AJH, Schluepmann H, Smeekens SCM (2004) Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol 135:969–977

    PubMed  PubMed Central  Google Scholar 

  • Waller F, Furuya M, Nick P (2002) OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Mol Biol 50:415–425

    CAS  PubMed  Google Scholar 

  • Wang YP, Wang JF, Guo SG, Tian SW, Zhang J, Ren Y, Li MY, Gong GY, Zhang HY, Xu Y (2021) CRISPR/Cas9-mediated mutagenesis of ClBG1 decreased seed size and promoted seed germination in watermelon. Hortic Res 8:70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (1997) Sugar import and metabolism during seed development. Trends Plant Sci 2:169–174

    Google Scholar 

  • Wilson ID, Neill SJ, Hancock JT (2008) Nitric oxide synthesis and signalling in plants. Plant Cell Environ 31:622–631

    CAS  PubMed  Google Scholar 

  • Wolf S, Grsic-Rausch S, Rausch T, Greiner S (2003) Identification of pollen-expressed pectin methylesterase inhibitors in Arabidopsis. FEBS Lett 555:551–555

    CAS  PubMed  Google Scholar 

  • Xin S, Tao CC, Li HB (2016) Cloning and functional analysis of the promoter of an ascorbate oxidase gene from Gossypium hirsutum. PLoS ONE 11:e0161695

    PubMed  PubMed Central  Google Scholar 

  • Xing L, Zhao Y, Gao JH, Xiang CB, Zhu JK (2016) The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth. Sci Rep 6:27177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Zhao J, Peng P, Chihara RK, Li J (2009) BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassinosteroid signaling. Plant Physiol. 150:710–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Chen S, Jiang J (2015) Transcriptome analysis reveals the role of BpGH3.5 in root elongation of Betula platyphylla × B. pendula. Plant Cell Tissue Org 121:605–617

    CAS  Google Scholar 

  • Ye HX, Li L, Yin YH (2011) Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. J. Integr. Plant Biol 53:455–468

    CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    PubMed  PubMed Central  Google Scholar 

  • Youssef T, Saenger P (1996) Anatomical adaptive strategies to flooding and rhizosphere oxidation in mangrove seedlings. Aust J Bot 44:297–313

    Google Scholar 

  • Yucel A, Gulen S, Dincer S, Yucel A, Yetkinet G (2012) Comparison of two different applications of the Griess method for nitric oxide measurement. J Exp Integr Med 2:1

    Google Scholar 

  • Zeng FS, Sun FK, Li LL, Liu K, Zhan YG (2014) Genome-scale transcriptome analysis in response to nitric oxide in birch cells: implications of the triterpene biosynthetic pathway. PLoS ONE 9:e116157

    PubMed  PubMed Central  Google Scholar 

  • Zhao DY, Tian QY, Li LH, Zhang WH (2007) Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays. Ann Bot 100:497–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YC, Liao WB, Niu LJ, Wang M, Ma ZJ (2016) Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber. BMC Plant Biol 16:146

    PubMed  PubMed Central  Google Scholar 

  • Zuo JR, Niu QW, Nishizawa N, Wu Y, Kost B, Chua NH (2000) KORRIGAN, an Arabidopsis endo-1,4-β-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 12:1137–1152

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (2017YFC0506102) and the Natural Science Foundation of China (NSFC) (32171740, 31870581, 31570586 and 31601133).

Author information

Authors and Affiliations

Authors

Contributions

M. W., H. L. and H. Z. designed the experiments. M. W. and H. L. performed and analyzed the transcriptomic data. M. W. wrote the paper. Y. Z., C. G., D. M, Z. S, W. W, J. Z and Y. Y gave the suggestions. H. Z. revised this paper. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Hai-Lei Zheng.

Additional information

Responsible Editor: Ricardo Aroca.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Fig. S1

Characteristics of homology search of unigenes against the NCBI non-redundant protein sequence (Nr) database. Similarity distribution of top BLAST hits for each unigene (A), E-value distribution of BLAST hits for each unique sequence with a cut-off E-value of 1e-5 (B), and species classification of the top BLAST hits for each unigene with a cut-off E-value of 1e-5 (C). (PNG 267 kb)

High Resolution Image (TIFF 545 kb)

Supplementary Fig. S2

COG function classification of the annotated unigenes. Unigenes are classified into 25 categories. COG functional classes are shown on the x-axis, and the percentage of a specific class of unigenes is shown on the left y-axis. (PNG 390 kb)

High Resolution Image (TIFF 1091 kb)

Supplementary Fig. S3

GO classification of the annotated unigenes. The x-axis represents the number of genes in a sub-category. The left y-axis indicates the sub-categories of annotated unigenes in three categories: biological process (red), cellular component (blue), and molecular function (green). (PNG 462 kb)

High Resolution Image (TIFF 1123 kb)

Supplementary Fig. S4

KEGG classification of the annotated unigenes. The x-axis represents the percentage of a specific sub-category of unigenes in the main category. The left y-axis represents the sub-categories of annotated unigenes in five categories: (A) cellular processes, (B) environmental information processing, (C) genetic information processing, (D) metabolism, and (E) organismal systems. (PNG 244 kb)

High Resolution Image (TIFF 641 kb)

Supplementary Table S1

Primers used in qRT-PCR analysis (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, MY., Li, H., Zhong, YH. et al. Transcriptomic analyses reveal the effect of nitric oxide on the lateral root development and growth of mangrove plant Kandelia obovata. Plant Soil 472, 543–564 (2022). https://doi.org/10.1007/s11104-021-05271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05271-7

Keywords

Navigation