Skip to main content

Advertisement

Log in

How agroforestry systems influence soil fauna and their functions - a review

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Agroforestry systems have enhanced diversity of cultivated plants compared to monocultures, and are expected to affect associated biodiversity. Despite a growing body of literature on the importance of soil fauna, the known effects of different agroforestry types on soil fauna communities and functions have not yet been synthesized.

Scope

We scanned publications on soil fauna in agroforestry systems. Our aim was to give an overview of strengths and weaknesses of the existing data, in terms of spatial coverage and representation of diverse agroforestry types and soil fauna groups and functions.

Conclusions

Our database includes sixty-seven articles, mostly focusing on tropical regions and perennial crop agroforestry systems. Soil macrofauna are the most studied fauna group. The most common question addressed is the comparison of the effect of land use types on communities. Effects on fauna abundance and diversity are mainly positive when agroforestry is compared to cropland, and neutral or negative when compared to forests. Few publications actually measure soil fauna functions, or characterize their interactions and evolution in time and space depending on system design and management. Further work on soil fauna in agroforestry should harness ecological theory and address questions of spatial structure and scale, temporal dynamics and ecological interaction networks and how they determine ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adekunle OK (2009) Population dynamics of Meloidogyne incognita and three other phytonematodes on okra cultivars planted in alleys of Leucaena leucocephala and Gliricidia sepium. Australas Plant Pathol 38:211–215

  • Azul AM, Mendes SM, Sousa JP, Freitas H (2011) Fungal fruitbodies and soil macrofauna as indicators of land use practices on soil biodiversity in Montado. Agrofor Syst 82:121–138

    Google Scholar 

  • Barrios E, Sileshi GW, Shepherd K, Sinclair F (2012) Agroforestry and soil health: linking trees, soil biota, and ecosystem services. In: Soil ecology and ecosystem services, Oxford University Press. Wall, D. H. et al, pp 315–330

  • Barrios E, Valencia V, Jonsson M, Brauman A, Hairiah K, Mortimer PE, Okubo S (2018) Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. Int J Biodivers Sci Ecosyst Serv and Manage 14:1–16

    Google Scholar 

  • Barros E, Pashanasi B, Constantino R, Lavelle P (2002) Effects of land-use system on the soil macrofauna in western Brazilian Amazonia. Biol Fertil Soils 35:338–347

    Google Scholar 

  • Barros E, Neves A, Blanchart E, Fernandes ECM, Wandelli E, Lavelle P (2003) Development of the soil macrofauna community under silvopastoral and agrosilvicultural systems in Amazonia. Pedobiologia 47:273–280

    Google Scholar 

  • Bastardie F, Capowiez Y, Cluzeau D (2005) 3D characterisation of earthworm burrow systems in natural soil cores collected from a 12-year-old pasture. Appl Soil Ecol 30:34–46

    Google Scholar 

  • Bhadauria T, Kumar P, Kumar R, Maikhuri RK, Rao KS, Saxena KG (2012) Earthworm populations in a traditional village landscape in central Himalaya, India. Appl Soil Ecol 53:83–93

    Google Scholar 

  • Blanchart E, Villenave C, Viallatoux A, Barthès B, Girardin C, Azontonde A, Feller C (2006) Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. Eur J Soil Biol 42:S136–S144

    Google Scholar 

  • Briones MJI (2018) The serendipitous value of soil Fauna in ecosystem functioning: the unexplained explained. Front Environ Sci 6:149

    Google Scholar 

  • Capowiez Y, Samartino S, Cadoux S, Bouchant P, Richard G, Boizard H (2012) Role of earthworms in regenerating soil structure after compaction in reduced tillage systems. Soil Biol Biochem 55:93–103

    Google Scholar 

  • Cardinael R, Chevallier T, Cambou A, Béral C, Barthès B, Dupraz C, Durand C, Kouakoua E, Chenu C (2017) Increased soil organic carbon stocks under agroforestry: a survey of six different sites in France. Agric Ecosyst Environ 236:243–255

    Google Scholar 

  • Cardinael R, Hoeffner K, Chenu C, Chevallier T, Béral C, Dewisme A, Cluzeau D (2019) Spatial variation of earthworm communities and soil organic carbon in temperate agroforestry. Biol Fertil Soils 55:171–183

    CAS  Google Scholar 

  • Cezar RM, Vezzani FM, Schwiderke DK, Gaiad S, Brown GG, Seoane CES, Froufe LCM (2015) Soil biological properties in multistrata successional agroforestry systems and in natural regeneration. Agrofor Syst 89:1035–1047

    Google Scholar 

  • Cheik S, Bottinelli N, Soudan B, Harit A, Chaudhary E, Sukumar R, Jouquet P (2019) Effects of termite foraging activity on topsoil physical properties and water infiltration in vertisol. Appl Soil Ecol 133:132–137

    Google Scholar 

  • Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in Forest ecosystem and landscape ecology variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience 49:288–297

    Google Scholar 

  • Crittenden SJ, Huerta E, de Goede RGM, Pulleman MM (2015) Earthworm assemblages as affected by field margin strips and tillage intensity: an on-farm approach. Eur J Soil Biol 66:49–56

    Google Scholar 

  • De Farias PM, Arellano L, Hernández MIM, Ortiz SL (2015) Response of the copro-necrophagous beetle (Coleoptera: Scarabaeinae) assemblage to a range of soil characteristics and livestock management in a tropical landscape. J Insect Conserv 19:947–960

    Google Scholar 

  • Delabie JHC, Jahyny B, do Nascimento IC, Mariano CSF, Lacau S, Campiolo S, Philpott SM, Leponce M (2007) Contribution of cocoa plantations to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic Forest fauna of southern Bahia, Brazil. Biodivers Conserv 16:2359–2384

    Google Scholar 

  • Doblas-Miranda E, Paquette A, Work TT (2014) Intercropping trees’ effect on soil oribatid diversity in agro-ecosystems. Agrofor Syst 88:671–678

    Google Scholar 

  • Dollinger J, Jose S (2018) Agroforestry for soil health. Agrofor Syst 92:213–219

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Springer Science & Business Media

  • Eisenhauer N, Migunova VD, Ackermann M, Ruess L, Scheu S (2011) Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland. PLoS One 6(9):e24087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Google Scholar 

  • Felicitas AC, Hervé BDB, Ekesi S, Akutse KS, Djuideu CTCL, Meupia MJ, Babalola OO (2018) Consequences of shade management on the taxonomic patterns and functional diversity of termites (Blattodea: Termitidae) in cocoa agroforestry systems. Ecol Evol 8:11582–11595

    PubMed  PubMed Central  Google Scholar 

  • Fonte SJ, Six J (2010) Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system. Ecol Appl 20:1061–1073

    PubMed  Google Scholar 

  • Fonte SJ, Barrios E, Six J (2010) Earthworm impacts on soil organic matter and fertilizer dynamics in tropical hillside agroecosystems of Honduras. Pedobiologia 53:327–335

  • García-Tejero S, Taboada Á (2016) Microhabitat heterogeneity promotes soil fertility and ground-dwelling arthropod diversity in Mediterranean wood-pastures. Agric Ecosyst Environ 233:192–201

    Google Scholar 

  • Giller KE, Beare MH, Lavelle P, Izac AMN, Swift MJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Appl Soil Ecol 6:3–16

    Google Scholar 

  • Giraldo C, Escobar F, Chará JD, Calle Z (2011) The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conserv Diver 4:115–122

  • Gómez-Cifuentes A, Giménez Gómez VC, Moreno CE, Zurita GA (2019) Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: the role of microclimate and soil conditions. Basic Appl Ecol 34:64–74

    Google Scholar 

  • Gravel D, Albouy C, Thuiller W (2016) The meaning of functional trait composition of food webs for ecosystem functioning. Philos Trans R Soc B 371:20150268

    Google Scholar 

  • Griffiths J, Phillips DS, Compton SG, Wright C, Incoll LD (1998) Responses of slug numbers and slug damage to crops in a silvoarable agroforestry landscape. J Appl Ecol 35:252–260

    Google Scholar 

  • Guenat S, Kaartinen R, Jonsson M (2019) Shade trees decrease pest abundances on brassica crops in Kenya. Agrofor Syst 93:641–652

    Google Scholar 

  • Guillot E, Hinsinger P, Dufour L, Roy J, Bertrand I (2019) With or without trees: resistance and resilience of soil microbial communities to drought and heat stress in a Mediterranean agroforestry system. Soil Biol Biochem 129:122–135

    CAS  Google Scholar 

  • Hartemink AE (2005) Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: a review. In: Sparks DL (ed) Advances in agronomy, vol 86. Elsevier Academic Press Inc, San Diego, pp 227–253

    Google Scholar 

  • Hauser S (1993) Distribution and activity of earthworms and contribution to nutrient recycling in alley cropping. Biol Fertil Soils 15:16–20

    CAS  Google Scholar 

  • Hauser S, Asawalam DO, Vanlauwe B (1998) Spatial and temporal gradients of earthworm casting activity in alley cropping systems. Agrofor Syst 41:127–137

    Google Scholar 

  • Hawke MF, Wedderburn ME (1994) Microclimate changes under pinus radiata agroforestry regimes in New Zealand. Agric For Meteorol 71:133–145

    Google Scholar 

  • Hedde M, van Oort F, Lamy I (2012) Functional traits of soil invertebrates as indicators for exposure to soil disturbance. Environ Pollut 164:59–65

    CAS  PubMed  Google Scholar 

  • Henneron L, Bernard L, Hedde M, Pelosi C, Villenave C, Chenu C, Bertrand M, Girardin C, Blanchart E (2015) Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron Sustain Dev 35:169–181

    Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10

    Google Scholar 

  • Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M (2006) Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Appl Soil Ecol 32:153–164

    Google Scholar 

  • Kamau S, Barrios E, Karanja NK, Ayuke FO, Lehmann J (2017) Soil macrofauna abundance under dominant tree species increases along a soil degradation gradient. Soil Biol Biochem 112:35–46

    CAS  Google Scholar 

  • Kang BT, Ojo A (1996) Nutrient availability of earthworm casts collected from under selected woody agroforestry species. Plant Soil 178:113–119

    CAS  Google Scholar 

  • Kang BT, Caveness FE, Tian G, Kolawole GO (1999) Longterm alley cropping with four hedgerow species on an Alfisol in southwestern Nigeria – effect on crop performance, soil chemical properties and nematode population. Nutr Cycl Agroecosyst 54:145–155

    Google Scholar 

  • Karungi J, Cherukut S, Ijala AR, Tumuhairwe JB, Bonabana-Wabbi J, Nuppenau EA, Hoeher M, Domptail S, Otte A (2018) Elevation and cropping system as drivers of microclimate and abundance of soil macrofauna in coffee farmlands in mountainous ecologies. Appl Soil Ecol 132:126–134

    Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc B-Biol Sci 363:685–701

    CAS  Google Scholar 

  • Lakshmi G, Joseph A (2017) Soil microarthropods as indicators of soil quality of tropical home gardens in a village in Kerala, India. Agrofor Syst 91:439–450

    Google Scholar 

  • Lavelle P, Decaëns T, Aubert M et al (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15

    Google Scholar 

  • Liu Y, Li X, Liu Q (2016) Soil nematode communities in jujube (Ziziphus jujuba mill.) rhizosphere soil under monoculture and jujube/wheat (Triticum aestivum Linn.) intercropping systems, a case study in Xinjiang arid region, northwest of China. Eur J Soil Biol 74:52–59

    Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agronomy for Sustainable Development 34 (2):443-454

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models: a review. In: Lichtfouse E, Navarrete M, Debaeke P et al (eds) Sustainable Agriculture. Springer Netherlands, Dordrecht, pp 329–353

    Google Scholar 

  • Marichal R, Grimaldi M, Feijoo MA, Oszwald J, Praxedes C, Hernan D, Cobo R, del Pilar HM, Desjardins T, da Silva Junior ML, da Silva Costa LG, Miranda IS, Oliveira MND, Brown GG, Tsélouiko S, Martins MB, Decaëns T, Velasquez E, Lavelle P (2014) Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Appl Soil Ecol 83:177–185

    Google Scholar 

  • Martin-Chave A, Béral C, Mazzia C, Capowiez Y (2018) Agroforestry impacts the seasonal and diurnal activity of dominant predatory arthropods in organic vegetable crops. Agrofor Syst. https://doi.org/10.1007/s10457-018-0309-4

  • Martin-Chave A, Béral C, Capowiez Y (2019) Agroforestry has an impact on nocturnal predation by ground beetles and Opiliones in a temperate organic alley cropping system. Biol Control 129:128–135

    Google Scholar 

  • Monteith JL, Ong CK, Corlett JE (1991) Microclimatic interactions in agroforestry systems. For Ecol Manag 45:31–44

    Google Scholar 

  • Morales-Castilla I, Matias MG, Gravel D, Araújo MB (2015) Inferring biotic interactions from proxies. Trends Ecol Evol 30:347–356

    PubMed  Google Scholar 

  • Moretti M, Dias ATC, de Bello F, Altermatt F, Chown S, Azcarate FM, Bell JR, Fournier B, Hedde M, Hortal J, Ibanez S, Ockinger E, Sousa JP, Ellers J, Berg MP (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31:558–567

    Google Scholar 

  • Muvengwi J, Mbiba M, Ndagurwa HGT, Nyamadzawo G, Nhokovedzo P (2017) Termite diversity along a land use intensification gradient in a semi-arid savanna. J Insect Conserv 21:801–812

    Google Scholar 

  • Negasa T, Ketema H, Legesse A, Sisay M, Temesgen H (2017) Variation in soil properties under different land use types managed by smallholder farmers along the toposequence in southern Ethiopia. Geoderma 290:40–50

    CAS  Google Scholar 

  • Nieminen M, Ketoja E, Mikola J, Terhivuo J, Sirén T, Nuutinen V (2011) Local land use effects and regional environmental limits on earthworm communities in Finnish arable landscapes. Ecol Appl 21:3162–3177

    Google Scholar 

  • Norgrove L, Csuzdi C, Forzi F, Canet M, Gounes J (2009) Shifts in soil faunal community structure in shaded cacao agroforests and consequences for ecosystem function in Central Africa. Trop Ecol 50:71–78

    Google Scholar 

  • Palm CA (1995) Contribution of agroforestry trees to nutrient requirements of intercropped plants. In: Sinclair FL (ed) Agroforestry: science, policy and practice: selected papers from the agroforestry sessions of the IUFRO 20th world congress, Tampere, Finland, 6–12 August 1995. Springer Netherlands, Dordrecht, pp 105–124

  • Park J, Newman SM, Cousins SH (1994) The effects of poplar (P. trichocarpa × deltoides) on soil biological properties in a silvoarable system. Agrofor Syst 25:111–118

    Google Scholar 

  • Pauli N, Oberthür T, Barrios E, Conacher AJ (2010) Fine-scale spatial and temporal variation in earthworm surface casting activity in agroforestry fields, western Honduras. Pedobiologia 53:127–139

    Google Scholar 

  • Pauli N, Barrios E, Conacher AJ, Oberthür T (2012) Farmer knowledge of the relationships among soil macrofauna, soil quality and tree species in a smallholder agroforestry system of western Honduras. Geoderma 189–190:186–198

    Google Scholar 

  • Pelosi C, Barot S, Capowiez Y, Hedde M, Vandenbulcke F (2014a) Pesticides and earthworms. A review. Agron Sustain Dev 34:199–228

    CAS  Google Scholar 

  • Pelosi C, Pey B, Hedde M, Caro G, Capowiez Y, Guernion M, Peigné J, Piron D, Bertrand M, Cluzeau D (2014b) Reducing tillage in cultivated fields increases earthworm functional diversity. Appl Soil Ecol 83:79–87

    Google Scholar 

  • Pelosi C, Pey B, Caro G, Cluzeau D, Peigné J, Bertrand M, Hedde M (2016) Dynamics of earthworm taxonomic and functional diversity in ploughed and no-tilled cropping systems. Soil Tillage Res 156:25–32

    Google Scholar 

  • Pey B, Laporte M-A, Nahmani J, Auclerc A, Capowiez Y, Caro G, Cluzeau D, Cortet J, Decaëns T, Dubs F, Joimel S, Guernion M, Briard C, Grumiaux F, Laporte B, Pasquet A, Pelosi C, Pernin C, Ponge JF, Salmon S, Santorufo L, Hedde M (2014a) A thesaurus for soil invertebrate trait-based approaches. PLoS One 9:e108985

    PubMed  PubMed Central  Google Scholar 

  • Pey B, Nahmani J, Auclerc A, Capowiez Y, Cluzeau D, Cortet J, Decaëns T, Deharveng L, Dubs F, Joimel S, Briard C, Grumiaux F, Laporte MA, Pasquet A, Pelosi C, Pernin C, Ponge JF, Salmon S, Santurofo L, Hedde M (2014b) Current use of and future needs for soil invertebrate functional traits in community ecology. Basic Appl Ecol 15:194–206

    Google Scholar 

  • Poeydebat C, Tixier P, Chabrier C, de Lapeyre de Bellaire L, Vargas R, Daribo MO, Carval D (2017) Does plant richness alter multitrophic soil food web and promote plant-parasitic nematode regulation in banana agroecosystems? Appl Soil Ecol 117–118:137–146

    Google Scholar 

  • Ponge J-F, Peres G, Guernion M, Ruiz-Camacho N, Cortet J, Pernin C, Villenave C, Chaussod R, Martin-Laurent F, Bispo A, Cluzeau D (2013) The impact of agricultural practices on soil biota: a regional study. Soil Biol Biochem 67:271–284

    CAS  Google Scholar 

  • Price GW, Gordon AM (1998) Spatial and temporal distribution of earthworms in a temperate intercropping system in southern Ontario, Canada. Agrofor Syst 44:141–149

    Google Scholar 

  • Rahman PM, Varma RV, Sileshi GW (2012) Abundance and diversity of soil invertebrates in annual crops, agroforestry and forest ecosystems in the Nilgiri biosphere reserve of Western Ghats, India. Agrofor Syst 85:165–177

    Google Scholar 

  • Rossetti I, Bagella S, Cappai C, Caria MC, Lai R, Roggero PP, Martins da Silva P, Sousa JP, Querner P, Seddaiu G (2015) Isolated cork oak trees affect soil properties and biodiversity in a Mediterranean wooded grassland. Agric Ecosyst Environ 202:203–216

    Google Scholar 

  • Rossi J-P, Blanchart E (2005) Seasonal and land-use induced variations of soil macrofauna composition in the Western Ghats, southern India. Soil Biol Biochem 37:1093–1104

    CAS  Google Scholar 

  • Rousseau L, Fonte SJ, Téllez O, van der Hoek R, Lavelle P (2013) Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecol Indic 27:71–82

    CAS  Google Scholar 

  • Sauvadet M, den Meersche KV, Allinne C, Gay F, Filho EMV, Chauvat M, Becquer T, Tixier P, Harmand JM (2019) Shade trees have higher impact on soil nutrient availability and food web in organic than conventional coffee agroforestry. Sci Total Environ 649:1065–1074

    CAS  PubMed  Google Scholar 

  • Schroth G (1998) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agrofor Syst 43:5–34

    Google Scholar 

  • Sinclair FL (1999) A general classification of agroforestry practice. Agrofor Syst 46:161–180

    Google Scholar 

  • Singh AK, Kumar P, Singh R, Rathore N (2012) Dynamics of tree-crop interface in relation to their influence on microclimatic changes - a review. HortFlora Res Spectr 1:193–198

    Google Scholar 

  • Smith J, Potts SG, Woodcock BA, Eggleton P (2008) Can arable field margins be managed to enhance their biodiversity, conservation and functional value for soil macrofauna? J Appl Ecol 45:269–278

    Google Scholar 

  • Somarriba E (1992) Revisiting the past: an essay on agroforestry definition. Agrofor Syst 19:233–240

    Google Scholar 

  • Spurgeon DJ, Keith AM, Schmidt O, Lammertsma DR, Faber JH (2013) Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties. BMC Ecol 13:46

    PubMed  PubMed Central  Google Scholar 

  • Suarez LR, Paladines Josa YT, Astudillo Samboni EJ, Lopez Cifuentes KD, Durán Bautista EH, Salazar JCS (2018) Soil macrofauna under different land uses in the Colombian Amazon. Pesqui Agropecu Bras 53:1383–1391

    Google Scholar 

  • Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC, Hails RS, Hays GC, Hodgson DJ, Hutchings MJ, Johnson D, Jones JPG, Keeling M, Kokko H, Kunin WE, Lambin X, Lewis OT, Malhi Y, Mieszkowska N, Milner-Gulland EJ, Norris K, Phillimore AB, Purves DW, Reid JM, Reuman DC, Thompson K, Travis JMJ, Turnbull LA, Wardle D, Wiegand T (2013) Identification of 100 fundamental ecological questions. J Ecol 101:58–67

    Google Scholar 

  • Teuscher M, Gérard A, Brose U, Buchori D, Clough Y, Ehbrecht M, Hölscher D, Irawan B, Sundawati L, Wollni L, Kreft H (2016) Experimental biodiversity enrichment in oil-Palm-dominated landscapes in Indonesia. Front Plant Sci 7:1538

    PubMed  PubMed Central  Google Scholar 

  • Torquebiau EF (2000) A renewed perspective on agroforestry concepts and classification. CR Acad Sci III - Vie 323:1009–1017

  • Udawatta RP, Kremer RJ, Adamson BW, Anderson SH (2008) Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice. Appl Soil Ecol 39:153–160

    Google Scholar 

  • Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22

    Google Scholar 

  • Vanhove W, Vanhoudt N, Van Damme P (2016) Effect of shade tree planting and soil management on rehabilitation success of a 22-year-old degraded cocoa (Theobroma cacao L.) plantation. Agric Ecosyst Environ 219:14–25

    Google Scholar 

  • Vigiak O, Sterk G, Warren A, Hagen LJ (2003) Spatial modeling of wind speed around windbreaks. Catena 52:273–288

    Google Scholar 

  • Vohland K, Schroth G (1999) Distribution patterns of the litter macrofauna in agroforestry and monoculture plantations in Central Amazonia as affected by plant species and management. Appl Soil Ecol 13:57–68

    Google Scholar 

  • Wang S, Pan K, Tariq A, Zhang L, Sun X, Li Z, Sun F, Xiong Q, Song D, Olatunji OA (2018) Combined effects of cropping types and simulated extreme precipitation on the community composition and diversity of soil macrofauna in the eastern Qinghai-Tibet plateau. J Soils Sediments 18:3215–3227

    CAS  Google Scholar 

  • Wielgoss A, Tscharntke T, Buchori D, Fiala B, Clough Y (2010) Temperature and a dominant dolichoderine ant species affect ant diversity in Indonesian cacao plantations. Agric Ecosyst Environ 135:253–259

    Google Scholar 

  • Yeates GW (1988) Earthworm and enchytraeid populations in a 13-year-old agroforestry system. NZ J Forestry Sci 18:304–310

  • Yeates GW, Hawke MF, Rijkse WC (2000) Changes in soil fauna and soil conditions under Pinus radiata agroforestry regimes during a 25-year tree rotation. Biol Fertil Soils 31:391–406

    Google Scholar 

  • Young A (1997) Agroforestry for soil management. CAB International, New York

    Google Scholar 

  • Zomer RJ, Trabucco A, Coe R, Place F, van Noordwijk M, Xu JC. 2014. Trees on farms: an update and reanalysis of agroforestry’s global extent and socio-ecological characteristics. Working paper 179. Bogor, Indonesia: world agroforestry Centre (ICRAF) Southeast Asia regional program

Download references

Acknowledgments

We very much thank Eric Blanchart and three anonymous reviewers for their helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Marsden.

Additional information

Responsible Editor: Claire Chenu.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsden, C., Martin-Chave, A., Cortet, J. et al. How agroforestry systems influence soil fauna and their functions - a review. Plant Soil 453, 29–44 (2020). https://doi.org/10.1007/s11104-019-04322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04322-4

Keywords

Navigation