Skip to main content
Log in

Proteomics combined with BSMV-VIGS methods identified some N deficiency-responsive protein species and ABA role in wheat seedling

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Crops often encounter a soil deficiency of nitrogen (N), the most important macronutrient for plants; however, the molecular mechanism of plant responses to N deficiency remains unclear. In this study, proteome-level changes that occur in bread wheat seedlings suffering from N deficiency were investigated to identify some N deficiency-responsive protein species in bread wheat.

Methods

We utilized isobaric tagging for relative and absolute quantification (iTRAQ) to measure changes in the proteome patterns of N-deficient wheat seedlings and validated the role of abscisic acid (ABA) using the barley stripe mosaic virus-induced gene-silencing (BSMV-VIGS) method.

Results

A total of 1515 N deficiency–responsive protein species were successfully identified in both root and leaf tissues of wheat seedlings suffering from 8-d N deficiency. Of these, abundance of wheat zeaxanthin epoxidase (TaZEP), a key ABA synthesis-related enzyme, was significantly upregulated, and the endogenous ABA contents also markedly increased. After TaZEP gene was further silenced using BSMV-VIGS method, BSMV-VIGS-TaZEP infected wheat seedlings showed enhanced sensitivity to N deficiency, suggesting silencing of TaZEP gene decreased the tolerance to N deficiency remarkably.

Conclusion

Our results identified some N deficiency-responsive protein species and revealed the role of ABA in wheat responses to N deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

BSMV-VIGS:

barley stripe mosaic virus-virus induced gene-silencing

CTK:

cytokinin

DW:

dry weight

ETH:

ethylene

FW:

fresh weight

IAA:

auxin

iTRAQ:

isobaric tagging for relative and absolute quantification

JA:

jasmonic acid

MW:

molecular weights

pI:

isoelectric points

qRT-PCR:

quantitative real-time PCR

SA:

salicylic acid

ZEP:

zeaxanthin epoxidase

References

  • Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol 125:1248–1257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borisjuk N, Kishchenko O, Eliby S, Schramm C, Anderson P, Jatayev S, Kurishbayev A, Shavrukov Y (2019) Genetic modification for wheat improvement: from transgenesis to genome editing. Biomed Res Int 2019:6216304

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, Allen AM et al (2012) Analysis of the bread wheat genome using whole–genome shotgun sequencing. Nature 491:705–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai H, Lu Y, Xie W, Zhu T, Lian X (2012) Transcriptome response to nitrogen starvation in rice. J Biosci 37:731–747

    CAS  PubMed  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci U S A 108:7727–7732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao WS, Doğramaci M, Horvath DP, Anderson JV, Foley ME (2016) Phytohormone balance and stress-related cellular responses are involved in the transition from bud to shoot growth in leafy spurge. BMC Plant Biol 16:47

    PubMed  PubMed Central  Google Scholar 

  • Criado MV, Roberts IN, Echeverria M, Barneix AJ (2007) Plant growth regulators and induction of leaf senescence in nitrogen–deprived wheat plants. J Plant Growth Regul 26:301–307

    CAS  Google Scholar 

  • Cuming AC, Stevenson SR (2015) From pond slime to rain forest: the evolution of ABA signalling and the acquisition of dehydration tolerance. New Phytol 206:5–7

    CAS  PubMed  Google Scholar 

  • Curci PL, Cigliano RA, Zuluaga DL, Janni M, Sanseverino W, Sonnante G (2017) Transcriptomic response of durum wheat to nitrogen starvation. Sci Rep-UK 7:1176

    Google Scholar 

  • Deng G, Liu L, Zhong X, Lao C, Wang H, Wang B, Zhu C, Shah F, Peng D (2014) Comparative proteome analysis of the response of ramie under N, P and K deficiency. Planta 239:1175–1186

    CAS  PubMed  Google Scholar 

  • Elberse IAM, van Damme JMM, Tienderen PHV (2003) Plasticity of growth characteristics in wild barley (Hordeum spontaneum) in response to nutrient limitation. J Ecol 91:371–382

    Google Scholar 

  • Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants: wheat as a model. J Exp Bot 63:5045–5059

    CAS  PubMed  Google Scholar 

  • Findlay GD, MacCoss MJ, Swanson WJ (2009) Proteomic discovery of previously unannotated, rapidly evolving seminal fluid genes in Drosophila. Genome Res 19:886–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gelli M, Duo Y, Konda AR, Zhang C, Holding D, Dweikat I (2014) Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics 15:60–66

    Google Scholar 

  • Grobei MA, Qeli E, Brunner E, Rehrauer H, Zhang R, Roschitzki B, Basler K, Ahrens CH, Grossniklaus U (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Res 19:1786–1800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grün A, Buchner P, Broadley MR, Hawkesford MJ (2018) Identification and expression profiling of Pht1 phosphate transporters in wheat in controlled environments and in the field. Plant Biol 20:374–389

    PubMed  Google Scholar 

  • Guo T, Xuan H, Yang Y, Wang L, Wei L, Wang Y, Kang G (2014) Transcription analysis of genes encoding the wheat root transporter NRT1 and NRT2 families during nitrogen starvation. J Plant Growth Regul 33:837–848

    CAS  Google Scholar 

  • Hakeem KR, Ahmad A, Iqbal M, Gucel S, Ozturk M (2011) Nitrogen-efficient rice cultivars can reduce nitrate pollution. Environ Sci Pollut Res 18:1184–1193

    CAS  Google Scholar 

  • Han YL, Liao JY, Yu Y, Song HX, Rong N, Guan CY, Lepo JE, Ismail AM, Zhang ZH (2017) Exogenous abscisic acid promotes the nitrogen use efficiency of Brassica napus by increasing nitrogen remobilization in the leaves. J Plant Nutr 40:2540–2549

    CAS  Google Scholar 

  • He M, Zhu C, Dong K, Zhang T, Cheng Z, Li J, Yan Y (2015) Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC Plant Biol 15:1–17

    Google Scholar 

  • He X, Ma H, Zhao X, Nie S, Li Y, Zhang Z et al (2016a) Comparative RNA-seq analysis reveals that regulatory network of maize root development controls the expression of genes in response to N stress. PLoS One 11:3

    Google Scholar 

  • He L, Zhang H, Zhang Y, Song X, Feng W, Kang G, Wang C, Guo T (2016b) Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. Eur J Agron 73:170–185

    CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

    Google Scholar 

  • Hu G, Jin K, Yoo MJ, Grupp K, Chen S, Wendel JF (2013) Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. New Phytol 200:570–582

    CAS  PubMed  Google Scholar 

  • Hu J, Rampitsch C, Bykova NV (2015) Advances in plant proteomics toward improvement of crop productivity and stress resistance. Front Plant Sci 6:209

    PubMed  PubMed Central  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:661

    Google Scholar 

  • Jia J, Zhao S, Kong X, Li Y, Zhao G, He W et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    CAS  PubMed  Google Scholar 

  • Jin X, Li W, Hu D, Shi X, Zhang X, Zhang F, Fu Z, Ding D, Liu Z, Tang J (2015) Biological responses and proteomic changes in maize seedlings under nitrogen deficiency. Plant Mol Biol Rep 33:490–504

    CAS  Google Scholar 

  • Kang G, Li G, Wang L, Wei L, Yang Y, Wang P, Yang Y, Wang Y, Feng W, Wang C, Guo T (2015) Hg–responsive proteins identified in wheat seedlings using iTRAQ analysis and the role of ABA in Hg stress. J Proteome Res 14:249–267

    CAS  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress–contribution of proteomics studies to understanding plant stress response. J Proteome 74:1301–1322

    Google Scholar 

  • Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J (2018) Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. Front Plant Sci 9:122

  • Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F (2011) Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol 157:1255–1282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang Q, Zhang S, Wu P, Chen Y, Li M, Jiang H, Wu G (2017) Global gene expression analysis of the response of physic nut (Jatropha curcas L.) to medium- and long-term nitrogen deficiency. PLoS One 12:e0182700

    PubMed  PubMed Central  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    CAS  PubMed  Google Scholar 

  • Li G, Peng X, Xuan H, Wei L, Yang Y, Guo T, Kang G (2013) Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions. J Proteome Res 12:4846–4861

    CAS  PubMed  Google Scholar 

  • Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, Yan J, Jiang X, Zhang L, Wu J, Yin L, Zhang R, Wu L, Zheng Y, Mao L (2014) mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26:1878–1900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Wu Y, Liu G, Xiao X, Wang P, Gao T, Xu M, Han Q, Wang Y, Guo T, Kang G (2017) Large-scale proteomics combined with transgenic experiments demonstrates an important role of jasmonic acid in potassium deficiency response in wheat and rice. Mol Cell Proteomics 16:1889–1905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang C, Tian J, Liao H (2013) Proteomics dissection of plant responses to mineral nutrient deficiency. Proteomics 13:624–636

    CAS  PubMed  Google Scholar 

  • Ling HQ, Zhao S, Liu D, Wan J, Sun H, Zhang C et al (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    CAS  PubMed  Google Scholar 

  • Liu G, Wu Y, Xu M, Gao T, Wang P, Wang L, Guo T, Kang G (2016) Virus-induced gene silencing identifies an important role of the TaRSR1 transcription factor in starch synthesis in bread wheat. Int J Mol Sci 17:1557

    CAS  PubMed Central  Google Scholar 

  • Ma TL, Wu WH, Wang Y (2012) Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol 12:161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Zhou J, Chen G, Bian Y, Lv D, Li X, Wang Z, Yan Y (2014) iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genomics 15:1–20

    Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-Seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meise P, Jozefowicz AM, Uptmoor R, Mock HP, Ordon F, Schum A (2017) Comparative shoot proteome analysis of two potato (Solanum tuberosum L.) genotypes contrasting in nitrogen deficiency responses in vitro. J Proteome 166:68–82

    CAS  Google Scholar 

  • Møller ALB, Pedas P, Andersen B, Svensson B, Schjoerring JK, Finnie C (2011) Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant Cell Environ 34:2024–2037

    PubMed  Google Scholar 

  • Nawaz MA, Chen C, Shireen F, Zheng Z, Sohail H, Afzal M, Ali MA, Bie Z, Huang Y (2018) Genome-wide expression profiling of leaves and roots of watermelon in response to low nitrogen. BMC Genomics 19:456

    PubMed  PubMed Central  Google Scholar 

  • Nazir M, Pandey R, Siddiqi TO, Ibrahim MM, Qureshi MI, Abraham G, Vengavasi K, Ahamad A (2015) Nitrogen-deficiency stress induces protein expression differentially in low-N tolerant and low-N sensitive maize genotypes. Front Plant Sci 7:298

    Google Scholar 

  • Oka M, Shimoda Y, Sato N, Inoue J, Yamazaki T, Shimomura N, Fujiyama H (2012) Abscisic acid substantially inhibits senescence of cucumber plants (Cucumis sativus) grown under low nitrogen conditions. J Plant Physiol 169:789–796

    CAS  PubMed  Google Scholar 

  • Qin L, Walk TC, Han P, Chen L, Zhang S, Li Y, Hu X, Xie L, Yang Y, Liu J, Lu X, Yu C, Tian J, Shaff JE, Kochian LV, Liao X, Liao H (2019) Adaption of roots to nitrogen deficiency revealed by 3D quantification and proteomic analysis. Plant Physiol 179:329–347

    CAS  PubMed  Google Scholar 

  • Quan X, Zeng J, Ye L, Chen G, Han Z, Munawar J, Zhang G (2016) Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen. BMC Plant Biol 16:30

    PubMed  PubMed Central  Google Scholar 

  • Ristova D, Carré C, Pervent M, Medici A, Kim GJ, Scalia D et al (2016) Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the Arabidopsis thaliana root. Sci Signal 9:451

    Google Scholar 

  • Schlüter H, Apweiler R, Holzhütter HG, Jungblut PR (2009) Finding one's way in proteomics: a protein species nomenclature. Chem Cent J 3:11

    PubMed  PubMed Central  Google Scholar 

  • Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Xu W, Li S, Zhao X, Dong G (2010) Responses of two rice cultivars differing in seedling–stage nitrogen use efficiency to growth under low–nitrogen conditions. Plant Soil 326:291–302

    CAS  Google Scholar 

  • Song J, Jiang L, Jameso PE (2012) Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biol 12:78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torabi S, Wissuwa M, Heidari M, Naghavi MR, Gilany K, Hajirezaei MR, Omidi M, Yazdi-Samadi B, Ismail AM, Salekdeh GH (2009) A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorus deficiency. Proteomics 9:159–170

    CAS  PubMed  Google Scholar 

  • Tufan HA, Stefanato FL, McGrann GRD, MacCormack R, Boyd LA (2011) The barley stripe mosaic virus system used for virus-induced gene silencing in cereals differentially affects susceptibility to fungal pathogens in wheat. J Plant Physiol 168:990–994

    CAS  PubMed  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Bian Y, Cheng K, Zou H, Sun S, He J (2012) A comprehensive differential proteomic study of nitrate deprivation in Arabidopsis reveals complex regulatory networks of plant nitrogen responses. J Proteome Res 11:2301–2315

    CAS  PubMed  Google Scholar 

  • Wei Z, Zeng X, Qin C, Wang Y, Bai L, Xu Q et al (2016) Comparative transcriptome analysis revealed genes commonly responsive to varied nitrate stress in leaves of tibetan hulless barley. Front Plant Sci 7:298

    Google Scholar 

  • Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    CAS  PubMed  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    CAS  PubMed  Google Scholar 

  • Yang W, Yoon J, Choi H, Fan Y, Chen R, An G (2015) Transcriptome analysis of nitrogen-starvation responsive genes in rice. BMC Plant Biol 15:31

    PubMed  PubMed Central  Google Scholar 

  • Zhang N, Huo W, Zhang L, Chen F, Cui D (2016) Identification of winter-responsive proteins in bread wheat using proteomics analysis and virus-induced gene silencing. Mol Cell Proteomics 15:2954–2969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhou Y, Chen S, Liu J, Fan K, Li Z, Liu Z, Lin W (2019) Gibberellins play dual roles in response to phosphate starvation of tomato seedlings, negatively in shoots but positively in roots. J Plant Physiol 234–245:145–153

    Google Scholar 

  • Zhao T, Zhao S, Chen H, Zhao Q, Hu Z, Hou B, Xia G (2006) Transgenic wheat frogeny resistant to powdery mildew generated by Agrobacterium inoculumto the basal portion of wheat seedling. Plant Cell Rep 25:1199–1204

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Science and Technology Innovation Program for Increase in Yield and Efficiency of Food Crop (2016YFD0300105) and the National Key Technology Support Program (2015BAD26B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiancai Guo.

Additional information

Responsible Editor: Ad C. Borstlap.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, G., Wu, Y., Li, G. et al. Proteomics combined with BSMV-VIGS methods identified some N deficiency-responsive protein species and ABA role in wheat seedling. Plant Soil 444, 177–191 (2019). https://doi.org/10.1007/s11104-019-04260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04260-1

Keywords

Navigation