Skip to main content
Log in

Differences in root-associated bacterial communities among fine root branching orders of poplar (Populus × euramericana (Dode) Guinier.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Root branching leads to morphological and functional heterogeneity of fine roots. However, the structure of soil microbiota associated with root branching orders has never been investigated. Deep insights into rhizosphere microbial community could provide a better understanding of the plant-microbe relationship.

Methods

Fine roots of poplar (Populus × euramericana (Dode) Guinier.) were sampled and sorted into three groups according to their branching orders. Scanning electron microscopy (SEM) was used to observe the surface features of different orders of fine roots. Illumina MiSeq was employed to analyze the bacterial community structure of soil compartments from different root orders (i.e., R1, R2, and R3) and bulk soil compartment (NR).

Results

SEM showed that the first-order root with smaller diameter had dense coverage of vigorous root hairs, whereas higher order roots with larger diameter had sloughed-off cortical tissues on the rhizoplane. The diversity of bacterial communities was higher in the R1 and R2 compartment than in R3 or NR. There were 80 genera with a relative abundance above 0.05% in soils. Ternary plot revealed that bacterial genera were significantly enriched in R1 than in R2 or R3. Redundant analysis (RDA) showed that 12 dominant bacterial genera with a relative abundance over 1% were significantly correlated with P and NH4 +-N content of soils.

Conclusions

Root orders could influence the inhabitation of bacterial communities. The core groups of bacterial communities inhabiting the rhizosphere were correlated with soil nutrients. The root order-dependent interactions of plant-microbe provided a new model about the association between roots and soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Bagniewska-Zadworna A, Stelmasik A, Minicka J (2014) From birth to death – Populus trichocarpa fibrous roots functional anatomy. Biol Plant 58:551–560

    Article  Google Scholar 

  • Barlow PW (1975) The root cap. In: Torrey JG, Clarkson DT (eds) The development and function of roots (Third Cabot Symposium). Academic, London, pp 21–54

    Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere–associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 71:4203–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality–filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59

    Article  CAS  PubMed  Google Scholar 

  • Braak T, Šmilauer PN (2002) Canoco reference manual and CanoDraw for Windows: user’ guide: software for Canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Bulgarelli D, Rot M, Schlaeppi K, Themaat EVLV, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root–inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Article  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N et al (2010) QIIME allows analysis of high–throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle G, Brzostek E, Jastrow JD (2014) Synthesis and modeling perspective of rhizosphere priming. New Phytol 201:31–44

    Article  CAS  PubMed  Google Scholar 

  • Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera–checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol 4:1–8

    Article  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenhauer N, Scheu S, Jousset A (2012) Bacterial diversity stabilizes community productivity. PLoS One 7:e34517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan PP, Guo DL (2010) Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia 163:509–515

    Article  PubMed  Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Article  Google Scholar 

  • Gordon WS, Jackson RB (2000) Nutrient concentrations in fine roots. Ecology 81:275–280

    Article  Google Scholar 

  • Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Karpinets T, Uberbacher E, Tuskan GA, Vilgalys R, Doktycz MJ, Schadt CW (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayston SJ, Griffith GS, Mawdslcy JL, Campbell CD, Bardgett RD (2001) Accounting for variability in soil microbial communities of temperate upland grassland ecosystem. Soil Biol Biochem 33:533–551

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL (2008a) Fine root heterogeneity by branch order: Exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol 177:443–456

    Article  PubMed  Google Scholar 

  • Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008b) Anatomical traits associated with absorption and mycorrhical colonization are linked to root branch order in twenty–three Chinese temperate tree species. New Phytol 180:673–683

    Article  PubMed  Google Scholar 

  • Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Hajek P, Hertel D, Leuschner C (2014) Root order– and root age–dependent response of two poplar species to belowground competition. Plant Soil 377:337–355

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, Tuinen DV, Berg G (2009) Plant–driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hishi T, Takeda H (2005) Dynamics of heterorhizic root systems: Protoxylem groups within the fine–root system of Chamaecyparis obtuse. New Phytol 167:509–521

    Article  PubMed  Google Scholar 

  • Iversen CM (2014) Using root form to improve our understanding of root function. New Phytol 203:707–709

    Article  PubMed  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci U S A 94:7362–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong DL, Ma CG, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol 203:863–872

    Article  PubMed  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Rui JP, Mao YJ, Yannarell A, Mackie R (2014) Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol Biochem 68:392–401

    Article  CAS  Google Scholar 

  • Ling N, Yang S, Raza W, Huang Q, Guo S, Shen Q (2015) The response of root–associated bacterial community to the grafting of watermelon. Plant Soil 391:352–264

    Article  Google Scholar 

  • Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack ML, Dickie IA, Eissensat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald R, Zadworny M (2015) Redefining fine roots improves understanding of below–ground contributions to terrestrial biosphere processes. New Phytol 207:505–518

    Article  PubMed  Google Scholar 

  • Meng H, Zhang Y, Zhao LL, Zhao WJ, He C, Honaker CF, Zhai ZX, Sun ZK, Siegel PB (2014) Body weight selection affects quantitative genetic correlated responses in gut microbiota. PLoS One 9:e89862

    Article  PubMed  PubMed Central  Google Scholar 

  • Michael AQ, Miriam S, Paul C, Thomas DO, Simon RH, Thomas RC, Anna BE, Harold PS, Yong G (2012) A tale of three next generation sequencing platforms: comparison of ion torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341

    Article  Google Scholar 

  • Osmont KS, Sibout R, Hardtke CS (2007) Hidden branches: developments in root system architecture. Annu Rev Plant Biol 58:93–113

    Article  CAS  PubMed  Google Scholar 

  • Pan F, Xu A, Xia D, Yu Y, Chen G, Meyer M, Zhao D, Huang CH, Wu Q, Fu J (2015) Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor. Water Res 87:127–136

    Article  CAS  PubMed  Google Scholar 

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    Article  CAS  PubMed  Google Scholar 

  • Pires AC, Cleary DR, Almeida A, Cunha Â, Dealtry S, Mendonça-Hagler LS, Smalla K, Gomesa NM (2012) Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl Environ Microbiol 78:5520–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997) Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia 111:302–308

    Article  PubMed  Google Scholar 

  • Pregitzer KS, De Forest JL, Burton AJ (2002) Fine root architecture of nine north American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Rutvisuttinunt W, Chinnawirotpisan P, Simasathien S, Shrestha SK, Yoon IK, Klungthong C, Fernandez S (2013) Simultaneous and complete genome sequencing of influenza A and B with high coverage by Illumina MiSeq platform. J Virol Methods 193:394–404

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl GW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open–source, platform–independent, community–supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbé J, Muchero W, Bonito G, Vilgalys R, Tuskan G, Podar M, Schadt CW (2013) A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS One 8:e76382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timonen S, Hurek T (2006) Characterization of culturable bacterial populations associating with Pinus sylvestrisSuillus bovinus mycorrhizospheres. Can J Microbiol 52:769–778

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Buee M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288

    Article  CAS  PubMed  Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89

    Article  CAS  Google Scholar 

  • Wang YP, Li CR, Wang QK, Wang HT, Duan BL, Zhang GC (2016) Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils. J Soils Sediments 16:1858–1870

    Article  CAS  Google Scholar 

  • Watteau F, Villemin G, Ghanbaja J, Genet P, Pargney JC (2002) In situ ageing of fine beech roots (Fagus sylvatica) assessed by transmission electron microscopy and electron energy loss spectroscopy: description of microsites and evolution of polyphenolic substances. Biol Cell 94:55–63

    Article  CAS  PubMed  Google Scholar 

  • Wells CE, Eissenstat DM (2002) Beyond the roots of young seedlings: the influence of age and order on fine root physiology. J Plant Growth Regul 21:324–334

    Article  CAS  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer Press, London

    Book  Google Scholar 

  • Williams S, Foster P, Littlewood D (2014) The complete mitochondrial genome of a turbinid vetigastropod from MiSeq Illumina sequencing of genomic DNA and steps towards a resolved gastropod phylogeny. Gene 533:38–47

    Article  CAS  PubMed  Google Scholar 

  • Xia MX, Guo DL, Pregitzer KS (2010) Ephemeral root modules in Fraxinus mandshurica. New Phytol 188:1065–1074

    Article  PubMed  Google Scholar 

  • Xu T, Wang HT, Zhu WR, Wang YP, Li CR, Jiang YZ (2015) Morphological and anatomical traits of poplar fine roots in successive rotation plantations. Sci Silvae Sin 51:119–126

    Google Scholar 

  • Yoon-Seong J, Sang-Cheol P, Jeongmin L, Jongsik C, Bong-Soo K (2015) Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform. J Microbiol 53:60–69

    Article  Google Scholar 

  • Zadworny M, McCormack ML, Rawlik K, Jagodzinski AM (2015) Seasonal variation in chemistry, but not morphology, in roots of Quercus robur growing in different soil types. Tree Physiol 35:644–652

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Ni T, Li Y, Xiong W, Ran W, Shen B, Shen Q, Zhang R (2014) Responses of bacterial communities in arable soils in a rice–wheat cropping system to different fertilizer regimes and sampling times. PLoS One 9:e85301

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Gutknecht JM, Herman DJ, Keck DC, Firestone MK, Cheng WX (2014) Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol Biochem 76:183–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Basic Research Program of China (2012CB416904) and the National Natural Science Foundation of China (31570618). Additionally, this study was supported by the funds of the Shandong Double Tops Program (Grant No. SYL2017XTTD03). We thank the anonymous reviewers for the helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Wang.

Additional information

Responsible Editor: Stéphane Compant

Electronic supplementary material

ESM 1

(DOC 12988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Wang, N., Wang, Y. et al. Differences in root-associated bacterial communities among fine root branching orders of poplar (Populus × euramericana (Dode) Guinier.). Plant Soil 421, 123–135 (2017). https://doi.org/10.1007/s11104-017-3449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3449-9

Keywords

Navigation