Skip to main content
Log in

Evaluation of phosphorus in thermally converted sewage sludge: P pools and availability to wheat

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Dried sewage sludge (SS) and the by-products of four SS thermal conversion processes (pyrolysis, incineration and two types of gasification) were investigated for phosphorus (P) availability.

Methods

A sequential extraction was used to determine the distribution of P among different P pools. After mixing materials with soil, availability of the P was determined with soil P extractions and in a growth experiment with wheat.

Results

Thermally converted SS contained a greater proportion of P within recalcitrant pools than dried SS. Despite having very different P pool distributions, the incinerated and dried SS provided similar amounts of P to plants. Plant P supply from dried and incinerated SS was lower than the comparable soluble P treatment (50 mg P kg−1), but higher than a soluble treatment at a lower rate (20 mg P kg−1). Plant P uptake in gasified and pyrolysed treatments was only marginally greater than uptake in a control (no P) treatment. Plant P uptake correlated most closely with diffusive gradients in thin films (DGT) P analysis of soil-material mixes. Phosphorus availability in the dried and incinerated SS treatments increased over time.

Conclusions

We propose that the dried and incinerated SS have potential as slow release P fertilisers in low pH soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahrenfeldt J, Henriksen U, Jensen T K, Gøbel B, Wiese L, Kather A, Egsgaard H (2006) Validation of a continuous combined heat and power (CHP) operation of a two-stage biomass gasifier. Energy Fuels 20(6):2672–2680. doi:10.1021/ef0503616

    Article  CAS  Google Scholar 

  • Bruun S, Harmer S L, Bekiaris G, Christel W, Zuin L, Hu Y, Jensen L S, Lombi E (2017) The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere 169:377–386. doi:10.1016/j.chemosphere.2016.11.058

    Article  CAS  PubMed  Google Scholar 

  • Cabeza R, Steingrobe B, Römer W, Claassen N (2011) Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutrient Cycling in Agroecosystems 91(2):173. doi:10.1007/s10705-011-9454-0

    Article  CAS  Google Scholar 

  • Colwell J (1963) The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Anim Prod Sci 3(10):190–197

    Article  CAS  Google Scholar 

  • DeLuca T H, Gundale M J, MacKenzie M D, Jones D L (2015) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation, 2nd edn. Taylor and Francis, New York, pp 421–454

    Google Scholar 

  • Gaskin J W, Steiner C, Harris K, Das K C, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51(6):2061–2069. doi:10.13031/2013.25409

    Article  Google Scholar 

  • Harrison E Z, Oakes S R, Hysell M, Hay A (2006) Organic chemicals in sewage sludges. Sci Total Environ 367(2–3):481–497. doi:10.1016/j.scitotenv.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  • Hedley M J, Stewart J W B, Chauhan B S (1982a) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46(5):970. doi:10.2136/sssaj1982.03615995004600050017x

  • Hedley M J, White R E, Nye P H (1982b) Plant-induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. New Phytologist 91(1):45–56. doi:10.1111/j.1469-8137.1982.tb03291.x

  • Henriksen U, Ahrenfeldt J, Jensen T K, Gøbel B, Bentzen JD, Hindsgaul C, Sørensen LH (2006) The design, construction and operation of a 75 kW two-stage gasifier. Energy 31(10–11):1542–1553. doi:10.1016/j.energy.2005.05.031

    Article  CAS  Google Scholar 

  • Herzel H, Krüger O, Hermann L, Adam C (2016) Sewage sludge ash—a promising secondary phosphorus source for fertilizer production. Sci Total Environ Part B 542:1136–1143. doi:10.1016/j.scitotenv.2015.08.059

    Article  CAS  Google Scholar 

  • Huang R, Tang Y (2015) Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge. Environ Sci Technol 49(24):14466–14474. doi:10.1021/acs.est.5b04140

    Article  CAS  PubMed  Google Scholar 

  • Ippolito J A, Spokas K A, Novak J M, Lentz R D, Cantrell K B (2015) Biochar elemental composition and factors influencing nutrient retention. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation, 2nd edn. Taylor and Francis, New York, USA, pp 139–163

    Google Scholar 

  • Jakobsen P, Willett I R (1986) Comparisons of the fertilizing and liming properties of lime-treated sewage sludge with its incinerated ash. Fertil Res 9(3):187–197. doi:10.1007/BF01050345

    Article  CAS  Google Scholar 

  • Kauffman N, Dumortier J, Hayes D J, Brown R C, Laird D A (2014) Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass Bioenergy 63:167–176. doi:10.1016/j.biombioe.2014.01.049

    Article  CAS  Google Scholar 

  • Kuligowski K, Poulsen T G, Rubæk GH, Sørensen P (2010) Plant-availability to barley of phosphorus in ash from thermally treated animal manure in comparison to other manure based materials and commercial fertilizer. Eur J Agron 33(4):293–303. doi:10.1016/j.eja.2010.08.003

    Article  Google Scholar 

  • Ma N, Zhang L, Zhang Y, Yang L, Yu C, Yin G, Doane T A, Wu Z, Zhu P, Ma X (2016) Biochar improves soil aggregate stability and water availability in a mollisol after three years of field application. PLOS ONE 11(5):e0154091. doi:10.1371/journal.pone.0154091

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackay JE, Macdonald LM, Smernik RJ, Cavagnaro TR (2017) Organic amendments as phosphorus fertilisers: Chemical analyses, biological processes and plant P uptake. Soil Biol Biochem 107:50–59. doi:10.1016/j.soilbio.2016.12.008

    Article  CAS  Google Scholar 

  • Mason S, McNeill A, McLaughlin M J, Zhang H (2010) Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods. Plant Soil 337(1–2):243–258. doi:10.1007/s11104-010-0521-0

    Article  CAS  Google Scholar 

  • McLaughlin M J, Champion L (1987) Sewage sludge as a phosphorus amendment for sesquioxic soils. Soil Science 143(2):113–119

    Article  Google Scholar 

  • Mellbye M E, Hemphill D D, Volk V V (1982) Sweet corn growth on incinerated sewage sludge-amended soil. J Environ Qual 11(2):160. doi:10.2134/jeq1982.00472425001100020002x

    Article  CAS  Google Scholar 

  • Metson G S, Bennett E M (2015) Phosphorus cycling in Montreal’s food and urban agriculture systems. PLoS ONE 10(3):e0120726. doi:10.1371/journal.pone.0120726

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller-Stöver D S, Ahrenfeldt J, Holm J K, Shalatet S G S, Henriksen U B, Hauggaard-Nielsen H (2012) Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response. Nutr Cycl Agroecosyst 94(2–3):193–207. doi:10.1007/s10705-012-9533-x

    Article  Google Scholar 

  • Nanzer S, Oberson A, Berger L, Berset E, Hermann L, Frossard E (2014) The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33p labeling techniques. Plant Soil 377(1–2):439–456. doi:10.1007/s11104-013-1968-6

    Article  CAS  Google Scholar 

  • O’Connor G A, Sarkar D, Brinton S R, Elliott H A, Martin F G (2004) Phytoavailability of biosolids phosphorus. J Environ Qual 33(2):703. doi:10.2134/jeq2004.7030

    Article  PubMed  Google Scholar 

  • Qian T T, Jiang H (2014) Migration of phosphorus in sewage sludge during different thermal treatment processes. ACS Sustain Chem Eng 2(6):1411–1419. doi:10.1021/sc400476j

    Article  CAS  Google Scholar 

  • Richardson A E, Lynch J P, Ryan P R, Delhaize E, Smith F A, Smith S E, Harvey P R, Ryan M H, Veneklaas E J, Lambers H, Oberson A, Culvenor R A, Simpson R J (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349 (1–2):121–156. doi:10.1007/s11104-011-0950-4

    Article  CAS  Google Scholar 

  • Römer W, Schilling G (1986) Phosphorus requirements of the wheat plant in various stages of its life cycle. Plant Soil 91(2):221–229. doi:10.1007/BF02181789

    Article  Google Scholar 

  • Saggar S, Hedley M J, White R E (1992) Development and evaluation of an improved soil test for phosphorus: 1. The influence of phosphorus fertilizer solubility and soil properties on the extractability of soil P. Fertil Res 33(1):81–91. doi:10.1007/BF01058012

    Article  CAS  Google Scholar 

  • Scholz R W, Wellmer F W (2013) Approaching a dynamic view on the availability of mineral resources: what we may learn from the case of phosphorus? Glob Environ Chang 23(1):11–27. doi:10.1016/j.gloenvcha.2012.10.013

    Article  Google Scholar 

  • Singh B, Macdonald L M, Kookana R S, van Zwieten L, Butler G, Joseph S, Weatherley A, Kaudal B B, Regan A, Cattle J, Dijkstra F, Boersma M, Kimber S, Keith A, Esfandbod M (2014) Opportunities and constraints for biochar technology in Australian agriculture: looking beyond carbon sequestration. Soil Res 52(8):739–750

  • Six L, Smolders E, Merckx R (2014) Testing phosphorus availability for maize with DGT in weathered soils amended with organic materials. Plant Soil 376(1–2):177–192. doi:10.1007/s11104-013-1947-y

    Article  CAS  Google Scholar 

  • Smith S R, Triner N G, Knight J J (2002) Phosphorus release and fertiliser value of enhanced-treated and nutrient-removal biosolids. Water Environ J 16(2):127–134. doi:10.1111/j.1747-6593.2002.tb00383.x

    Article  Google Scholar 

  • Thomsen T P, Ravenni G, Holm J K, Ahrenfeldt J, Hauggaard-Nielsen H, Henriksen U B (2015) Screening of various low-grade biomass materials for low temperature gasification: method development and application. Biomass Bioenergy 79:128–144. doi:10.1016/j.biombioe.2014.12.019

    Article  CAS  Google Scholar 

  • Thomsen TP, Sarossy Z, Ahrenfeldt J, Henriksen UB, Frandsen FJ, Müller-Stover DS (2017a) Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge. J Environ Manage 198:308–318

  • Thomsen TP, Hauggaard-Nielsen H, Gøbel B, Stoholm P, Ahrenfeldt J, Henriksen UB, Müller-Stöver DS (2017b) Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer Waste Management. In press. doi:10.1016/j.wasman.2017.04.043

  • Viader RP, Jensen PE, Ottosen LM, Thomsen TP, Ahrenfeldt J, Hauggaard-Nielsen H (2016) Comparison of phosphorus recovery from incineration and gasification sewage sludge ash. In: 2nd IWA conference on holistic sludge management (HSM2016)

  • Wang T, Camps-Arbestain M, Hedley M, Bishop P (2012) Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 357(1–2):173–187. doi:10.1007/s11104-012-1131-9

    CAS  Google Scholar 

  • Wang T, Camps-Arbestain M, Hedley M (2014) The fate of phosphorus of ash-rich biochars in a soil-plant system. Plant Soil 375(1–2):61–74

    Article  CAS  Google Scholar 

  • Wilfert P, Kumar P S, Korving L, Witkamp G J, van Loosdrecht M C M (2015) The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: a review. Environ Sci Technol 49(16):9400–9414. doi:10.1021/acs.est.5b00150

  • Zhao L, Cao X, Wang Q, Yang F, Xu S (2013) Mineral constituents profile of biochar derived from diversified waste biomasses: implications for agricultural applications. J Environ Qual 42 (2):545. doi:10.2134/jeq2012.0232

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Wang Z, Deng X, Zhao J, Luo Y, Novak J, Herbert S, Xing B (2013) Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour Technol 130:463–471. doi:10.1016/j.biortech.2012.12.044

  • Zwetsloot M J, Lehmann J, Solomon D (2015) Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry? J Sci Food Agric 95(2):281–288. doi:10.1002/jsfa.6716

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Lena Byrgesen and Dr Thomas Hansen for their help with chemical analyses of materials, and Nelly Raymond and Katerina Efthymiou for their help in the lab. We would also like to thank Dr Ronald Smernik for his feedback on the original manuscript, and two anonymous reviewers for their valuable advice. This research was funded by the Grains Research and Development Corporation via a Grains Industry Research Scholarship (GRS10686) to JEM and funding from the ARC to TRC (FT120100463). JEM would also like to acknowledge support through an Australian Government Research Training Program Scholarship. Two travel grants were awarded to JEM to travel to Denmark to undertake this research, one from the Plant Nutrition Trust and one from the University of Adelaide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica E. Mackay.

Additional information

Responsible Editor: John Hammond.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 258 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackay, J.E., Cavagnaro, T.R., Jakobsen, I. et al. Evaluation of phosphorus in thermally converted sewage sludge: P pools and availability to wheat. Plant Soil 418, 307–317 (2017). https://doi.org/10.1007/s11104-017-3298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3298-6

Keywords

Navigation