Skip to main content

Advertisement

Log in

Dual-labeling with 15N and H2 18O to investigate water and N uptake of wheat under different water regimes

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Water and nitrogen are essential for plant growth and yield. Plants depend on surface roots for nutrient uptake, but frequently rely on deep root systems for water uptake, especially in semi-arid, rain fed crop production systems.

Methods

We used H2 18O and 15NH4 + tracers in pots to determine water and NH4 + uptake at depth by two wheat genotypes watered from the surface or from the bottom. Root traits and transpiration rates were related to water and NH4 + uptake.

Results

We observed a significant positive relationship between transpiration rate and water uptake measured by H2 18O tracer (R2 = 0.91), confirming that the H2 18O tracer method was successful. Surface soil drying (bottom watering) decreased both water and NH4 + uptake from the top soil. However, increased water availability with bottom watering increased water uptake from the bottom soil layer, but not NH4 + uptake from the bottom soil layer. Water uptake was positively related to total root length, while NH4 + uptake was positively related to root biomass.

Conclusions

With surface soil drying, plants grew more and longer roots in the bottom soil layer, shifting water uptake from the top to the bottom soil, while N uptake was reduced in the top soil because of a decrease in root biomass. Different root traits need to be considered when optimizing water and NH4 + uptake by wheat in water deficient seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araki H, Iijima M (2005) Stable isotope analysis of water extraction from subsoil in upland rice (Oryza sativa L.) as affected by drought and soil compaction. Plant Soil 270(1–2):147–157. doi:10.1007/s11104-004-1304-2

    Article  CAS  Google Scholar 

  • Asseng S, Ritchie JT, Smucker AJM, Robertson MJ (1998) Root growth and water uptake during water deficit and recovering in wheat. Plant Soil 201(2):265–273. doi:10.1023/A:1004317523264

    Article  CAS  Google Scholar 

  • Barraclough D (1995) 15N isotope dilution techniques to study soil nitrogen transformations and plant uptake. Fert Res 42(1–3):185–192. doi:10.1007/BF00750513

    Article  CAS  Google Scholar 

  • Barraclough PB, Kuhlmann H, Weir AH (1989) The effects of prolonged drought and nitrogen fertilizer on root and shoot growth and water uptake by winter wheat. J Agron Crop Sci 163(5):352–360. doi:10.1111/j.1439-037X.1989.tb00778.x

    Article  Google Scholar 

  • Brooks JR, Barnard HR, Coulombe R, McDonnell JJ (2010) Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat Geosci 3:100–104. doi:10.1038/ngeo722

    Article  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Terrestrial nutrient cycling. Principles of Terrestrial Ecosystem Ecology. Springer, pp 197–223.

  • Chapman N, Whalley WR, Lindsey K, Miller AJ (2011) Water supply and not nitrate concentration determines primary root growth in Arabidopsis. Plant Cell Environ 34(10):1630–1638. doi:10.1111/j.1365-3040.2011.02358.x

    Article  CAS  PubMed  Google Scholar 

  • Chenu K, Deihimfard R, Chapman SC (2013) Large-scale characterization of drought pattern: a continent-wide modelling approach applied to the Australian wheat belt–spatial and temporal trends. New Phytol 198(3):801–820. doi:10.1111/nph.12192

    Article  PubMed  Google Scholar 

  • Comas L, Eissenstat D (2004) Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct Ecol 18(3):388–397. doi:10.1111/j.0269-8463.2004.00835.x

    Article  Google Scholar 

  • Corneo PE, Suenaga H, Kertesz MA, Dijkstra FA (2016) Effect of twenty four wheat genotypes on soil biochemical and microbial properties. Plant Soil. doi:10.1007/s11104-016-2833-1

  • Dai X, Xiao L, Jia D, Kong H, Wang Y, Li C, Zhang Y, He M (2014) Increased plant density of winter wheat can enhance nitrogen–uptake from deep soil. Plant Soil 384(1–2):141–152. doi:10.1007/s11104-014-2190-x

    Article  CAS  Google Scholar 

  • Dardanelli JL, Ritchie JT, Calmon M, Andriani JM, Collino DJ (2004) An empirical model for root water uptake. Field Crop Res 87(1):59–71. doi:10.1016/j.fcr.2003.09.008

    Article  Google Scholar 

  • Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Biol 11(1):82–87. doi:10.1016/j.pbi.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra FA, He M, Johansen MP, Harrison JJ, Keitel C (2015) Plant and microbial uptake of nitrogen and phosphorus affected by drought using 15N and 32P tracers. Soil Biol Biochem 82:135–142. doi:10.1016/j.soilbio.2014.12.021

    Article  CAS  Google Scholar 

  • Dunbabin V, Diggle A, Rengel Z (2003) Is there an optimal root architecture for nitrate capture in leaching environments? Plant Cell Environ 26(6):835–844. doi:10.1046/j.1365-3040.2003.01015.x

    Article  PubMed  Google Scholar 

  • Ehdaie B, Layne AP, Waines JG (2012) Root system plasticity to drought influences grain yield in bread wheat. Euphytica 186(1):219–232. doi:10.1007/s10681-011-0585-9

    Article  Google Scholar 

  • Ehleringer JR, Evans RD, Williams D (1998) Assessing sensitivity to change in desert ecosystems—a stable isotope approach. In: Griffiths H (ed) Stable isotopes: integration of biological, ecological and geochemical processes. BIOS Scientific, Oxford, pp. 223–237

    Google Scholar 

  • Elazab A, Molero G, Serret MD, Araus JL (2012) Root traits and δ13C and δ18O of durum wheat under different water regimes. Funct Plant Biol 39(5):379–393. doi:10.1071/FP11237

    Article  CAS  Google Scholar 

  • Fageria N, Baligar V (2005) Enhancing nitrogen use efficiency in crop plants. Adv Agron 88:97–185. doi:10.1016/S0065-2113(05)88004-6

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP (2002) Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34(6):777–787. doi:10.1016/S0038-0717(02)00007-X

    Article  CAS  Google Scholar 

  • Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WBT, Wojciechowski T, Young IM (2009) Root phenomics of crops: opportunities and challenges. Funct Plant Biol 36(11):922–929. doi:10.1071/FP09150

    Article  Google Scholar 

  • IPCC (2013) In: Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels a, Xia Y, Bex B, Midgley B (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. UK & New York, NY, USA, Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson P, Cavelier J, Goldstein G, Meinzer F, Holbrook N (1995) Partitioning of water resources among plants of a lowland tropical forest. Oecologia 101(2):197–203. doi:10.1007/BF00317284

    Article  Google Scholar 

  • Jing J, Rui Y, Zhang F, Rengel Z, Shen J (2010) Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crop Res 119(2–3):355–364. doi:10.1016/j.fcr.2010.08.005

    Article  Google Scholar 

  • Kage H, Kochler M, Stützel H (2004) Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. Eur J Agron 20(4):379–394. doi:10.1016/S1161-0301(03)00061-3

    Article  Google Scholar 

  • Kirkegaard J, Lilley J (2007) Root penetration rate–a benchmark to identify soil and plant limitations to rooting depth in wheat. Anim Prod Sci 47(5):590–602. doi:10.1071/EA06071

    Article  Google Scholar 

  • Kulmatiski S, Beard KH, Verweij RJT, February EC (2010) A depth-controlled tracer technique measure vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna. New Phetol 188(1):199–209. doi:10.1111/j.1469-8137.2010.03338.x

    Article  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23(2):95–103. doi:10.1016/j.tree.2007.10.008

    Article  PubMed  Google Scholar 

  • Li Q, Dong B, Qiao Y, Liu M, Zhang J (2010) Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agric Water Manag 97(10):1676–1682. doi:10.1016/j.agwat.2010.05.025

    Article  Google Scholar 

  • Lilley J, Kirkegaard J (2011) Benefits of increased soil exploration by wheat roots. Field Crop Res 122(2):118–130. doi:10.1016/j.fcr.2011.03.010

    Article  Google Scholar 

  • Manske GGB, Vlek PLG (2002) Root architecture – wheat as a model plant. In: Waisel Y, Eshel A, Kafkafi L (eds) Plant roots-the hidden half, 3rd edn. Marcel Dekker, New York, pp. 249–259

    Chapter  Google Scholar 

  • McCole AA, Stern LA (2007) Seasonal water use patterns of Juniperus ashei on the Edwards plateau, Texas, based on stable isotopes in water. J Hydrol 342(3):238–248. doi:10.1016/j.jhydrol.2007.05.024

    Article  Google Scholar 

  • Nagel KA, Bonnett D, Furbank R, Walter A, Schurr U, Watt M (2015) Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping. J Exp Bot 66(18):5441–5452. doi:10.1093/jxb/erv290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proffitt A, Berliner P, Oosterhuis D (1985) A comparative study of root distribution and water extraction efficiency by wheat grown under high-and low-frequency irrigation. Agron J 77(5):655–662. doi:10.2134/agronj1985.00021962007700050001x

    Article  Google Scholar 

  • Qin R, Stamp P, Richner W (2004) Impact of tillage on root systems of winter wheat. Agron J 96(6):1523–1530. doi:10.2134/agronj2004.1523

    Article  Google Scholar 

  • Querejeta JI, Estrada-Medina H, Allen MF, Jiménez-Osornio JJ (2007) Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152(1):26–36. doi:10.1007/s00442-006-0629-3

    Article  PubMed  Google Scholar 

  • Reicosky D, Millington R, Klute A, Peters D (1972) Patterns of water uptake and root distribution of soybeans (Glycine Max.) in the presence of a water table. Agron J 64(3):292–297. doi:10.2134/agronj1972.00021962006400030011x

    Article  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58(2):177–186. doi:10.1093/jxb/erl250

    Article  CAS  PubMed  Google Scholar 

  • Romero-Saltos H, Stemberg LDSL, Moreira MZ, Nepstad DC (2005) Rainfall exclusion in an eastern Amazonian forest alters soil water movement and depth of water uptake. Am J Bot 92(3):443–455. doi:10.3732/ajb.92.3.443

    Article  PubMed  Google Scholar 

  • Rossato DR, Silva LCR, Sternberg LSL, Franco AC (2014) Do woody and herbaceous species compete for soil water across topographic gradients? Evidence for niche partitioning in a Neotropical savanna. S Afr J Bot 91:14–18. doi:10.1016/j.sajb.2013.11.011

    Article  Google Scholar 

  • Ryser P, Eek L (2000) Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources. Am J Bot 87(3):402–411. doi:10.2307/2656636

    Article  CAS  PubMed  Google Scholar 

  • Sanaullah M, Rumpel C, Charrier X, Chabbi A (2012) How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? Plant Soil 352(1):277–288. doi:10.1007/s11104-011-0995-4

    Article  CAS  Google Scholar 

  • Sharp R, Davies W (1985) Root growth and water uptake by maize plants in drying soil. J Exp Bot 36(9):1441–1456. doi:10.1093/jxb/36.9.1441

    Article  Google Scholar 

  • Shen J, Li C, Mi G, Li L, Yuan L, Jiang R, Zhang F (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64(5):1181–1192. doi:10.1093/jxb/ers342

    Article  CAS  PubMed  Google Scholar 

  • Song L, Zhang DW, Li FM, Fan XW, Ma Q, Turner N (2010) Drought stress: soil water availability alters the inter-and intra-cultivar competition of three spring wheat cultivars bred in different eras. J Agron Crop Sci 196(5):323–335. doi:10.1111/j.1439-037X.2010.00419.x

    Article  Google Scholar 

  • Stark JM (2000) Nutrient transformations. In: Jackson RB, Mooney HA, Howarth RW (eds) Sala OE. Methods in Ecosystem Science, Springer New York, pp. 215–234

    Google Scholar 

  • Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am Jo 60(6):1846–1855. doi:10.2136/sssaj1996.03615995006000060033x

    Article  CAS  Google Scholar 

  • Tjoelker M, Craine J, Wedin D, Reich P, Tilman D (2005) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol 167(2):493–508. doi:10.1111/j.1469-8137.2005.01428.x

    Article  CAS  PubMed  Google Scholar 

  • Trubat R, Cortina J, Vilagrosa A (2006) Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacialentiscus (L.). Trees 20(3):334–339. doi:10.1007/s00468-005-0045-z

    Article  Google Scholar 

  • Wang C, Liu W, Li Q, Ma D, Lu H, Feng W, Xie Y, Zhu Y, Guo T (2014) Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crop Res 165:138–149. doi:10.1016/j.fcr.2014.04.011

    Article  Google Scholar 

  • Wang Y, Dong X, Wang H, Wang Z, Gu J (2015) Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species. Tree Physiol. doi:10.1093/treephys/tpv094

    Google Scholar 

  • Wasson A, Richards R, Chatrath R, Misra S, Prasad SS, Rebetzke G, Kirkegaard J, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63(9):3485–3498. doi:10.1093/jxb/ers111

    Article  CAS  PubMed  Google Scholar 

  • West AG, Patrickson SJ, Ehleringer JR (2006) Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun Mass Sp 20(8):1317–1321. doi:10.1002/rcm.2456

    Article  CAS  Google Scholar 

  • West AG, Dawson T, February E, Midgley G, Bond W, Aston T (2012) Diverse functional responses to drought in a Mediterranean-type shrub land in South Africa. New Phytol 195(2):396–407. doi:10.1111/j.1469-8137.2012.04170.x

    Article  CAS  PubMed  Google Scholar 

  • White CA, Sylvester-Bradley R, Berry PM (2015) Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield. J Exp Bot 66(8):2293–2303. doi:10.1093/jxb/erv077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Hero Tahaei for laboratory assistance. This research was supported by Grains Research and Development Cooperation (US00061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Bakhshandeh.

Additional information

Responsible Editor: Rafael S. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshandeh, S., Kertesz, M.A., Corneo, P.E. et al. Dual-labeling with 15N and H2 18O to investigate water and N uptake of wheat under different water regimes. Plant Soil 408, 429–441 (2016). https://doi.org/10.1007/s11104-016-2944-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2944-8

Keywords

Navigation