Skip to main content

Advertisement

Log in

Climate, soils and vicariance - their roles in shaping the diversity and distribution of Nepenthes in Southeast Asia

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

The Palaeotropical pitcher plant genus Nepenthes (Nepenthaceae) is characterized by specialized nutrient sequestration strategies, narrow endemism, and a patchy distribution in which vicariance is believed to have played a fundamental role.

Scope

Using recent studies of the effects of climate, soil type and vicariance, we review patterns of diversity and endemism in Nepenthes. First we consider how climate influences the geographical range of the genus and diversity of prey trapping mechanisms. Second, we examine edaphic influences, specifically the relationship between limestone and ultramafic soils and the obligate edaphic endemic Nepenthes that inhabit them. Third, we examine the role of vicariance, with regards to the patchy distribution of suitable habitats throughout Southeast Asia, and the passive dispersal mechanism of Nepenthes seeds.

Conclusions

Climate is the principal determinant of variation in pitcher functional traits and in perhumid environments, may drive the evolution of alternative nutrient sequestration strategies. Although little is known about the ecophysiological relationships between soil type and obligate edaphic Nepenthes, ultramafic and limestone substrates may strongly influence vegetation physiognomy, creating a diversity of environmental niches that are exploited by specialized Nepenthes species. Finally, the complex geology and geography of the Malay Archipelago drives diversification through vicariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bauer U, Bohn HF, Federle W (2008) Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar. Proc R Soc B 275:259–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer U, Clemente CJ, Renner T, Federle W (2012) Form follows function: morphological diversification and alternative trapping strategies in carnivorous Nepenthes pitcher plants. J Evol Biol 25:90–102

    Article  PubMed  Google Scholar 

  • Bazile V, Le Moguédec G, Marshall DJ, Gaume L (2015) Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants. Ann Bot 115:705–716

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Syst 10:251–371

    Article  Google Scholar 

  • Benz MJ, Gorb EV, Gorb SN (2012) Diversity of the slippery zone microstructure in pitchers of nine carnivorous Nepenthes taxa. Arthropod Plant Interact 6:147–158

    Article  Google Scholar 

  • Benzing DH (1987) The origin and rarity of botanical carnivory. Trends Ecol Evol 2:364–369

    Article  Google Scholar 

  • Bohn HF, Federle W (2004) Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. PNAS 101:14138–14143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonhomme V, Pelloux-Prayer H, Jousselin E, Forterre Y, Labat J-J, Gaume L (2011) Slippery or sticky? Functional diversity in the trapping strategy of Nepenthes carnivorous plants. New Phytol 191:545–554

    Article  PubMed  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland

  • Bruijnzeel LA, Veneklaas EJ (1998) Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79:3–9

    Article  Google Scholar 

  • Bruijnzeel LA, Mulligan M, Scatena FN (2011) Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol Process 25:465–498

    Article  Google Scholar 

  • Burnham CP (1982) The forest environment: Soils. Ch. 11 in Whitmore TC, Tropical Rain Forests of the Far East. Clarendon, Oxford

    Google Scholar 

  • Chin L, Moran JA, Clarke C (2010) Trap geometry in three giant montane Nepenthes species from Borneo is a function of tree shrew body size. New Phytol 186:461–470. doi:10.1111/j.1469-8137.2009.03166.x

    Article  PubMed  Google Scholar 

  • Chin L, Chung AYC, Clarke C (2014) Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants – evidence for resource partitioning or sampling scheme artifacts? Plant Signal Behav 9:e27930

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke C (1997) Nepenthes of Borneo. Natural History Publications, Kota Kinabalu

    Google Scholar 

  • Clarke C (2001) Nepenthes of Sumatra and peninsular Malaysia. Natural History Publications, Kota Kinabalu

    Google Scholar 

  • Clarke CM, Kitching RL (1995) Swimming ants and pitcher plants – a unique ant-plant interaction from Borneo. J Trop Ecol 11:589–602

    Article  Google Scholar 

  • Clarke CM, Bauer U, Lee CC, Tuen, AA, Rembold K, Moran JA 2009. Tree shrew lavatories: a novel nitrogen sequestration strategy in a tropical pitcher plant. Biol Lett 5:635–635.

  • Clarke C, Lee CC, Enar V (2014) Observations on the natural history and ecology of Nepenthes campanulata. Carnivorous Plant Newsletter 43(1):7–13

    Google Scholar 

  • Danser BH (1928) The nepenthaceae of The Netherlands indies. Bull jard bot buitenz, Ser. III 9:249–438

    Google Scholar 

  • Darwin C (1875) Insectivorous plants. D. Appleton & Co., New York

    Book  Google Scholar 

  • Delissio LJ, Primack RB, Hall P, Lee HS (2002) A decade of canopy-tree seedling survival and growth in two bonrean rain forests: persistence and recovery from suppression. J Trop Ecol 18(5):645–658. doi:10.1017/S0266467402002420

    Article  Google Scholar 

  • Ellison AM, Gotelli NJ (2009) Energetics and evolution in carnivorous plants – Darwin’s “most wonderful plants in the world”. J Exp Bot 60:19–42

    Article  CAS  PubMed  Google Scholar 

  • Ent A, Sumail S, Clarke C (2015) Habitat differentiation of obligate ultramafic Nepenthes endemic to mount kinabalu and mount tambuyukon (Sabah, Malaysia). Plant Ecol. doi:10.1007/s11258-015-0468-6

    Google Scholar 

  • Farquhar GD, O'Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Foster P (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci Rev 55(1–2):73–106. doi:10.1016/S0012-8252(01)00056-3

    Article  Google Scholar 

  • Gaume L, Di Giusto B (2009) Adaptive significance and ontogenetic variability of the waxy zone in Nepenthes rafflesiana. Ann Bot 104:1281–1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaume L, Forterre Y (2007) A viscoelastic deadly fluid in carnivorous pitcher plants. PLoS One 2:e1185. doi:10.1371/journal.pone.0001185

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaume L, Gorb S, Rowe N (2002) Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. New Phytol 156:479–489

    Article  Google Scholar 

  • Gaume L, Perret P, Gorb E, Gorb S, Labat J-J, Rowe N (2004) How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arth Struct Dev 33:103–111

    Article  CAS  Google Scholar 

  • Givnish TJ, Burkhardt EL, Happel R, Weintraub J (1984) Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am Nat 124:479–497

    Article  Google Scholar 

  • Gorb EV, Gorb SN (2006) Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata Blanco (nepenthaceae). Plant Biol 8:841–848

    Article  CAS  PubMed  Google Scholar 

  • Gorb E, Kastner V, Peressadko A, et al (2004) Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention. J Exp Bot 207:2947–2963

    Article  Google Scholar 

  • Grafe TU, Schöner CR, Kerth G, Junaidi A, Schöner MG (2011) A novel resource-service mutualism between bats and pitcher plants. Biol Lett 7:436–439. doi:10.1098/rsbl.2010.1141

    Article  PubMed  PubMed Central  Google Scholar 

  • Heubl G, Bringmann G, Meimberg H (2006) Molecular phylogeny and character evolution of carnivorous plant families in caryophyllales – revisted. Plant Biol 8:821–830

    Article  CAS  PubMed  Google Scholar 

  • Hsu C-P, Lin Y-M, Chen P-Y (2015) Hierarchical structure and multifunctional surface properties of carnivorous pitcher plants Nepenthes. JOM 67. doi:10.1007/s11837-015-1349-0

  • Jebb M (1991) An account of Nepenthes in new guinea. Sci New Guinea 17(1):7–54

    Google Scholar 

  • Juniper BE, Burras J (1962) How pitcher plants trap insects. New Sci 13:75–77

    Google Scholar 

  • Juniper BE, Robins RJ, Joel DM (1989) The carnivorous plants. Academic Press, London

    Google Scholar 

  • Kato M (1993) Floral biology of Nepenthes gracilis. Am J Bot 80(8):924–927

    Article  Google Scholar 

  • Kurata S (1973) Nepenthes from Borneo, Singapore and Sumatra. Gard Bull Sing 26(2):227–232

    Google Scholar 

  • Kurata S (1976) Nepenthes of mount kinabalu. Sabah National Parks Trustees, Kota Kinabalu

    Google Scholar 

  • Lloyd FE (1942) The carnivorous plants. Chronia Botanica, Waltham

  • Lüttge U (1983) Ecophysiology of carnivorous plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12C. Springer, Berlin, pp. 489–517

    Google Scholar 

  • Meimberg H, Heubl G (2006) Introduction of a nuclear marker for phylogenetic analysis of nepenthaceae. Plant Biol 8:831–840

    Article  CAS  PubMed  Google Scholar 

  • Moran JA (1993) Visitors to the flowers of the pitcher plant Nepenthes rafflesiana. Brunei Museum J 8:73–75

    Google Scholar 

  • Moran JA (1996) Pitcher dimorphism, prey composition and the mechanism of prey attraction in the pitcher plant, Nepenthes rafflesiana in Borneo. J Ecol 84:515–525

    Article  Google Scholar 

  • Moran JA, Clarke C (2009) A review of the nutrient sequestration strategies of some bornean Nepenthes species. In: Lee CC, Clarke C (eds) Proceedings of the 2007 Sarawak Nepenthes summit. Kuching, Sarawak, pp. 8–18

    Google Scholar 

  • Moran JA, Merbach MA, Livingston NJ, Clarke CM, Booth WE (2001) Termite prey specialization in the pitcher plant Nepenthes albomarginata - evidence from stable isotope analysis. Ann Bot 88:307–311

    Article  Google Scholar 

  • Moran JA, Clarke CM, Hawkins BJ (2003) From carnivore to detritivore? Isotopic evidence for leaf litter utilization by the tropical pitcher plant Nepenthes ampullaria. Int J Plant Sci 164:635–639

    Article  Google Scholar 

  • Moran JA, Gray LK, Clarke C, Chin L (2013) Capture mechanism in palaeotropical pitcher plants (nepenthaceae) is constrained by climate. Ann Bot 112:1279–1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavlovic A, Slovakova L, Santrucek J (2011) Nutritional benefit from leaf litter utilization in the pitcher plant Nepenthes ampullaria. Plant, Cell Environ 34:1865–1873. doi:10.1111/j.1365-3040.2011.02382.x

  • Pereira CG, Almenara DP, Winter CE, Fritsch PW, Lambers H, Oliveira RS (2012) Underground leaves of Philcoxia trap and digest nematodes. Proc Natl Acad Sci U S A 109(4):1154–1158. doi:10.1073/pnas.1114199109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poppinga S, Koch K, Bohn HF, Barthlott W (2010) Comparative and functional morphology of hierarchically structured anti-adhesive surfaces in carnivorous plants and kettle trap flowers. Funct Plant Biol 37:952–961

    Article  Google Scholar 

  • Renner T, Specht CD (2011) A sticky situation: assessing adaptations for carnivory in the caryophyllales by means of stochastic character mapping. Int J Plant Soc 172(7):889–901. doi:10.1086/660882

    Article  CAS  Google Scholar 

  • Riedel M, Eichner A, Jetter R (2003) Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218:87–97

    Article  CAS  PubMed  Google Scholar 

  • Scholz I, Bückins M, Dolge L, et al (2010) Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. J Exp Biol 213:1115–1125

    Article  CAS  PubMed  Google Scholar 

  • Sim JWS, Tan HTW, Turner IM (1992) Adinandra belukar: an anthropogenic heath forest in Singapore. Vegetatio 102(2):125–137

    Article  Google Scholar 

  • Wang L, Zhou Q, Zheng Y, Xu S (2009) Composite structure and properties of the pitcher surface of the carnivorous plant Nepenthes and its influence on the insect attachment system. Prog Nat Sci 19:1657–1664

    Article  CAS  Google Scholar 

  • Whitmore TC (1982) Tropical rain forests of the far east. Clarendon, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Clarke.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clarke, C., Moran, J.A. Climate, soils and vicariance - their roles in shaping the diversity and distribution of Nepenthes in Southeast Asia. Plant Soil 403, 37–51 (2016). https://doi.org/10.1007/s11104-015-2696-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2696-x

Keywords

Navigation