Skip to main content

Advertisement

Log in

The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Iron plaque can affect the absorption and accumulation of metal(loid)s in plants. However, it is still unclear whether iron plaque plays different roles in the accumulation of different mercury species in rice plants. The aims of this study are 1) to explore the adsorption of IHg and MeHg onto iron plaque, 2) to investigate the influence of iron plaque on the absorption, translocation of IHg and MeHg in rice plants, 3) to explore whether the process of methylation and demethylation of Hg in vivo occurs in rice plants, and 4) to investigate the effects of iron plaque on the IHg and MeHg transformation in rice.

Methods

The seedlings were cultivated in an Fe2+ solution for 24 h to induce the iron plaque and then transferred into a nutrient solution containing 500 μg/L HgCl2 or MeHgCl for 72 h. The Hg content in the iron plaque and rice seedlings was measured by ICP-MS. The chemical forms of Hg in the rice seedlings were determined with HPLC-ICP-MS and XANES.

Results

Both IHg and MeHg, particularly MeHg, could be adsorbed by iron plaque. The IHg content of the root and the MeHg content in both the roots and shoots decreased markedly with the increase in iron plaque. The Hg in the root was mainly in the form of RS-Hg-SR with the exposure to HgCl2 and in the form of CH3-Hg-SR and RS-Hg-SR (4:1) with the exposure to MeHgCl. The iron plaque did not change the chemical forms of Hg in the rice plants.

Conclusions

Iron plaque greatly decreased the absorption and translocation of both IHg and MeHg in rice seedlings. The demethylation of MeHg occurred in rice plants (in vivo) regardless the formation of iron plaque. This work sheds some light on the understanding of different pathways between IHg and MeHg in rice plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. ACS Symp Ser 835:262–297

    Article  CAS  Google Scholar 

  • Carrasco-Gil S, Alvarez-Fernandez A, Sobrino-Plata J, Millan R, Carpena-Ruiz RO, Leduc DL, Andrews JC, Abadia J, Hernandez LE (2011) Complexation of Hg with phytochelatins is important for plant Hg tolerance. Plant Cell Environ 34:778–791

    Article  CAS  PubMed  Google Scholar 

  • Carrasco-Gil S, Siebner H, LeDuc D, Webb SM, Millan Gomez R, Andrews JC, Hernandez L (2013) Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environ Sci Technol 47:3082–3090

    CAS  PubMed  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  CAS  PubMed  Google Scholar 

  • De Robertis A, Foti C, Patane G, Sammartano S (1998) Hydrolysis of CH3Hg+ in different ionic media: Salt effects and complex formation. J Chem Eng Data 43:957–960

    Article  Google Scholar 

  • Debeljak M, van Elteren JT, Vogel-Mikus K (2013) Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections. Anal Chim Acta 787:155–162

    Article  CAS  PubMed  Google Scholar 

  • Deng G, Zhang T, Yang L, Wang Q (2013) Studies of biouptake and transformation of mercury by a typical unicellular diatom Phaeodactylum tricornutum. Chin Sci Bull 58:256–265

    Article  CAS  Google Scholar 

  • Diez S (2009) Human Health Effects of Methylmercury Exposure. In: DM Whitacre (ed) Rev Environ Contam Toxicol 198: 111–132

  • Dyrssen D, Wedborg M (1991) The sulfur-mercury (II) system in natural-waters. Water Air Soil Pollut 56:507–519

    Article  Google Scholar 

  • Fagerström T, Jernelöv A (1972) Some aspects of the quantitative ecology of mercury. Water Res 6:1193–1202

    Article  Google Scholar 

  • Fu Y, Yu Z, Cai K, Shen H (2010) Mechanisms of iron plaque formation on root surface of rice plants and their ecological and environmental effects: a review. Plant Nutr Fert Sci 16:1527–1534

    CAS  Google Scholar 

  • He C, Liu X, Zhang F (2004) Formation of iron plaque on root surface and its effect on plant nutrition and ecological environment. J Appl Ecol 15:1069–1073

    CAS  Google Scholar 

  • Horvat M, Nolde N, Fajon V, Jereb V, Logar M, Lojen S, Jacimovic R, Falnoga I, Qu LY, Faganeli J, Drobne D (2003) Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Sci Total Environ 304:231–256

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Huang Y, Huang Y, Liu Y (2013) Formation of iron plaque on root surface and its effect on Cd uptake and translocation by rice (Oryza sativa L.) at different growth stages. J Agro-Environ Sci 32:432–437

    CAS  Google Scholar 

  • Hu Y, Huang YZ, Liu YX (2014) Influence of iron plaque on chromium accumulation and translocation in three rice (Oryza sativa L.) cultivars grown in solution culture. Chem Ecol 30:29–38

    Article  CAS  Google Scholar 

  • Huang Y, Chen Z, Liu W (2012) Influence of iron plaque and cultivars on antimony uptake by and translocation in rice (Oryza sativa L.) seedlings exposed to Sb(III) or Sb(V). Plant Soil 352:41–49

    Article  CAS  Google Scholar 

  • Jiang GB, Shi JB, Feng XB (2006) Mercury pollution in China. Environ Sci Technol 40:3672–3678

    Article  CAS  Google Scholar 

  • Khan M, Wang F (2009) mercury-selenium compounds and therie toxicological significance: woward a molecular understanding of the mercury-selenium antasonism. Environ Toxicol Chem 28:1567–1577

    Article  CAS  PubMed  Google Scholar 

  • Lee C-H, Hsieh Y-C, Lin T-H, Lee D-Y (2013) Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice. Plant Soil 363:231–241

    Article  CAS  Google Scholar 

  • Li YB, Cai Y (2013) Progress in the study of mercury methylation and demethylation in aquatic environments. Chin Sci Bull 58:177–185

    Article  CAS  Google Scholar 

  • Li P, Feng XB, Qiu GL (2010) Methylmercury exposure and health effects from rice and fish consumption: a review. Int J Environ Res Public Health 7:2666–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Ye ZH, Wei ZJ, Wong MH (2011) Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants. Environ Pollut 159:30–37

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Zhao JT, Gao YX, Li YF, Li B, Zhao YL, Chai ZF (2014) Effects of iron plaque and selenium on the absorption and translocation of inorganic mercury and methylmercury in rice (Oryza staiva L.). Asian J Ecotoxicol 9:972–977

    CAS  Google Scholar 

  • Li YF, Zhao JT, Li YY, Li HJ, Zhang J, Li B, Gao YX, Chen CY, Luo M, Huang R (2015) The concentration of selenium matters: a field study on mercury accumulation in rice by selenite treatment in Qingzhen, Guizhou. Plant Soil 391:195–205

    Article  CAS  Google Scholar 

  • Liu W-J, Zhu Y-G, Smith FA (2005) Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant Soil 277:127–138

    Article  CAS  Google Scholar 

  • Liu H, Zhang J, Christie P, Zhang F (2008) Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Sci Total Environ 394:361–368

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Chen C, Gong X, Zhou W, Yang J (2014) Progress in research of iron plaque on root surface of wetland plants. Acta Ecol Sin 34:2470–2480

    CAS  Google Scholar 

  • McNear DH Jr, Afton SE, Caruso JA (2012) Exploring the structural basis for selenium/mercury antagonism in Allium fistulosum. Metallomics 4:267–276

    Article  CAS  PubMed  Google Scholar 

  • Meng M, Li B, Shao J-j, Wang T, He B, Shi J-b, Ye Z-h, Jiang G-b (2014) Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China. Environ Pollut 184:179–186

    Article  CAS  PubMed  Google Scholar 

  • Qiu GL, Feng XB, Wang SF, Shang LH (2006) Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China. Environ Pollut 142:549–558

    Article  CAS  PubMed  Google Scholar 

  • Rahman GMM, Kingston HM (2004) Application of speciated isotope dilution mass spectrometry to evaluate extraction methods for determining mercury speciation in soils and sediments. Anal Chem 76:3548–3555

    Article  CAS  PubMed  Google Scholar 

  • Rahman GMM, Fahrenholz T, Kingston HMS (2009) Application of speciated isotope dilution mass spectrometry to evaluate methods for efficiencies, recoveries, and quantification of mercury species transformations in human hair. J Anal At Spectrom 24:83–92

    Article  CAS  Google Scholar 

  • Ren LY, Zhao M, Dong YL, Wang F, Gao XH, Pang X (2014) Adsorption effect of two kinds of iron oxides on available Hg in soil. Acta Sci Cirumst 34:749–753

    CAS  Google Scholar 

  • Salt DE, Rauser WE (1995) Mg-ATP dependent transport of phytochelations across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syu C-H, Jiang P-Y, Huang H-H, Chen W-T, Lin T-H, Lee D-Y (2013) Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter. Soil Sci Plant Nutr 59:463–471

    Article  CAS  Google Scholar 

  • Syu C-H, Lee C-H, Jiang P-Y, Chen M-K, Lee D-Y (2014) Comparison of As sequestration in iron plaque and uptake by different genotypes of rice plants grown in As-contaminated paddy soils. Plant Soil 374:411–422

    Article  CAS  Google Scholar 

  • Syversen T, Kaur P (2012) The toxicology of mercury and its compounds. J Trace Elem Med Biol 26:215–226

    Article  CAS  PubMed  Google Scholar 

  • Tai C, Li Y, Yin Y, Scinto LJ, Jiang G, Cai Y (2014) Methylmercury photodegradation in surface water of the Florida Everglades: importance of dissolved organic matter-methylmercury complexation. Environ Sci Technol 48:7333–7340

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Leigh RA (2001) Partitioning of nutrient transport processes in roots. J Exp Bot 52:445–457

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Kumar A, Mishra A, Chauhan PS, Norton GJ, Nautiyal CS (2014) Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6:1789–1800

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Li YF, Li B, Dong ZQ, Qu LY, Gao YX, Chai ZF, Chen CY (2011) Multielemental contents of foodstuffs from the Wanshan (China) mercury mining area and the potential health risks. Appl Geochem 26:182–187

    Article  CAS  Google Scholar 

  • Wang JX, Feng XB, Anderson CWN, Wang H, Zheng LR, Hu TD (2012) Implications of mercury speciation in thiosulfate treated plants. Environ Sci Technol 46:5361–5368

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Feng X-B, Wang W-X (2013) In Vivo mercury methylation and demethylation in freshwater tilapia quantified by mercury stable isotopes. Environ Sci Technol 47:7949–7957

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li B, Tam N-Y, Huang L, Qi X, Wang H, Ye Z, Meng M, Shi J (2014) Radial oxygen loss has different effects on the accumulation of total mercury and methylmercury in rice. Plant Soil 385:1–13

    Article  CAS  Google Scholar 

  • Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG (2008) The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiol 147:1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei TB, Li JJ, Bai CB, Lin Q, Yao H, Xie YQ, Zhang YM (2013) A highly selective colorimetric sensor for Hg2+ based on a copper (II) complex of thiosemicarbazone in aqueous solutions. SCIENCE CHINA Chem 56:923–927

    Article  CAS  Google Scholar 

  • Wei Q, Nagi R, Sadeghi K, Feng S, Yan E, Ki SJ, Caire R, Tseng D, Ozcan A (2014) Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano 8:1121–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Ye Z, Li H, Wu S, Deng D, Zhu Y, Wong M (2012) Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? J Exp Bot 63:2961–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang CB, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathine revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Tam NF-Y, Ye Z (2014) Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation. Plant Soil 374:815–828

    Article  CAS  Google Scholar 

  • Zhang H, Feng XB, Larssen T, Shang LH, Li P (2010) Bioaccmulation of Methylmercury versus inorganic mercury in rice (Oryza stavis L.) grain. Environ Sci Technol 44:4499–4504

    Article  CAS  PubMed  Google Scholar 

  • Zhao JX, Li Y-F, Liang J, Wang XY, Li B, Liu W, Dong ZQ, Qu LY, Gao YX, Chen CY (2009) Concentrations of heavy metals in some vegetables and their potential risks to human health in Guiyang and Wanshan areas. Asian J Ecotoxicol 4:392–398

    Google Scholar 

  • Zhao JT, Li Y-F, Li YY, Gao YX, Li B, Hu Y, Zhao YL, Chai ZF (2014) Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics 6:1951–1957

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (Grant Nos. 21377129, 21407150, U1432241). We thank all the staff at BL15U (SSRF) and BL1W1B (BSRF) for their assistance during the SRXRF and XAS measurements and data processing. Y-F Li gratefully acknowledges the support from the K. C. Wong Education Foundation, Hong Kong, and the CAS Youth Innovation Association, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxi Gao.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, J., Zhang, B. et al. The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant Soil 398, 87–97 (2016). https://doi.org/10.1007/s11104-015-2627-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2627-x

Keywords

Navigation