Skip to main content

Advertisement

Log in

Water repellency of air-dried and sieved samples from limestone soils in central Portugal collected before and after prescribed fire

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Soil water repellency (SWR) in Mediterranean sub-humid environments is poorly studied in soils derived from basic bedrock. This study addressed this gap by comparing SWR in soil samples collected before/after a prescribed burning in a Mediterranean shrubland overlaying limestone.

Methods

Sampling was performed on two adjacent slopes (NE/SW) underneath Quercus coccifera, Pistacia lentiscus, Arbutus unedo shrubs, and on bare inter-patches, at two depths (0–2 and 2–5 cm). Samples were sieved at <0.25, 0.25–1, 1–2 and <2 mm and SWR was assessed through the Water Drop Penetration Time (WDPT) in each fraction. Samples were analysed for pH, AS, CaCO3 and SOM.

Results

SWR was present before fire, mainly in the <0.25 and 0.25–1 mm fractions at 0–2 cm, which could be explained by SOM (amount and chemical composition). Persistence varied between the two slopes (NE > SW) and the four patches (Arbutus unedo > Pistacia lentiscus ≈ Quercus coccifera > Bare). The low-severity fire slightly increased SWR but did not affect the above-mentioned pre-fire differences.

Conclusions

The wax and resins from different shrub species have implications for SWR persistence on the finer soil fractions. Prescribed fire increased the severity of SWR at surface but also its frequency at the subsurface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SWR:

Soil water repellency

SMC:

Soil moisture content

WDPT:

Water drop penetration time

SOM:

Soil organic matter

NE:

North-east

SW:

South-west

TC’s:

Thermocouples

TP’s:

Thermo-sensitive paints

AS:

Aggregate stability

CaCO3 :

Carbonate content

References

  • Andreu V, Imeson AC, Rubio JL (2001) Temporal changes in soil aggregates and water erosion after a wildfire in Mediterranean pine forest. Catena 44:69–84

    Article  Google Scholar 

  • Arcenegui V, Mataix-Solera J, Guerrero C, Zornoza R, Mayoral AM, Morales J (2007) Factors controlling the water repellency induced by fire in calcareous mediterranean forest soils. Eur J Soil Sci 58:1254–1259

    Article  Google Scholar 

  • Arcenegui V, Mataix-Solera J, Guerrero C, Zornoza R, Mataix-Beneyto J, García-Orenes F (2008) Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils. Catena 74:219–226

    Article  Google Scholar 

  • Bisdom EBA, Dekker LW, Schoute JFT (1993) Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma 56:105–118

    Article  Google Scholar 

  • Bochet E, García-Fayos P, Alborch B, Tormo J (2007) Soil water availability effects on seed germination account for species segregation in semiarid roadslopes. Plant Soil 295:179–191

    Article  CAS  Google Scholar 

  • Bodí MB, Muñoz-Santa I, Armero C, Doerr SH, Mataix-Solera J, Cerdà A (2013) Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena 108:14–25

    Article  Google Scholar 

  • Bodí MB, Martin DA, Balfourd VN, Santín C, Doerr SH, Pereira P, Cerdà A, Mataix-Solera J (2014) Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci Rev 130:103–127

    Article  Google Scholar 

  • Boix-Fayos C, Calvo-Cases A, Imeson AC, Soriano-Soto MD (2001) Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 44:47–67

    Article  Google Scholar 

  • Campo J, Gimeno-García E, Andreu V, González-Pelayo O, Rubio JL (2008) Aggregation of under canopy and bare soils in a Mediterranean environment affected by different fire intensities. Catena 74(3):212–218

    Article  Google Scholar 

  • Campo J, Nierop KGJ, Cammeraat E, Andreu V, Rubio JL (2011) Application of pyrolysis-gas chromatography/mass spectrometry to study changes in the organic matter of macro- and microaggregates of a Mediterranean soil upon heating. J Chromatogr A 1218:4817–4827

    Article  CAS  PubMed  Google Scholar 

  • Campo J, Gimeno-García E, Andreu V, González-Pelayo O, Rubio JL (2014) Cementing agents involved in the macro- and microaggregation of a Mediterranean shrubland soil under laboratory heating. Catena 113:165–176

    Article  CAS  Google Scholar 

  • Cerdà A (1998) Soil aggregate stability under different Mediterranean vegetation types. Catena 32(2):73–86

    Article  Google Scholar 

  • Cerdà A, Doerr SH (2007) Soil wettability, runoff and erodibility of major dry-mediterranean land use types on calcareous soils. Hydrol Process 21:2325–2336

    Article  Google Scholar 

  • De Blas E, Rodríguez-Alleres M, Almendros G (2010) Speciation of lipid and humic fractions in soils under pine and eucalyptus forest in northwest Spain and its effect on water repellency. Geoderma 155:242–248

    Article  Google Scholar 

  • Dekker LW, Ritsema CJ (1994) How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resour Res 30:2507–2517

    Article  Google Scholar 

  • Dlapa P, Bodí MB, Mataix-Solera J, Cerdà A, Doerr SH (2013) FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena 108:35–43

    Article  CAS  Google Scholar 

  • Doerr SH, Thomas AD (2000) The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. J Hydrol 231–232:134–147

    Article  Google Scholar 

  • Doerr SH, Shakesby RA, Walsh RPC (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev 51:33–65

    Article  Google Scholar 

  • Doerr SH, Dekker LW, Shakesby RA, Ritsema CJ, Bryant R (2002) Water repellency of soils: the influence of ambient relative humidity. Soil Sci Soc Am J 66:401–405

    Article  CAS  Google Scholar 

  • Doerr SH, Douglas RC, Morley CP, Mullinger NJ, Bryant R, Shakesby RA (2005) Effects of heating and post-heating equilibration times on soil water repellency. Aust J Soil Res 43:261–267

    Article  Google Scholar 

  • Fernandes PM, Botelho HS (2003) A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildland Fire 12:117–128

    Article  Google Scholar 

  • Gimeno-García E, Andreu V, Rubio JL (2004) Spatial patterns of soil temperatures during experimental fires. Geoderma 118:17–38

    Article  Google Scholar 

  • Gimeno-García E, Pascual JA, Llovet J (2011) Water repellency and moisture spatial variations under Rosmarinus officinalis and Quercus coccifera in a Mediterranean burned soil. Catena 85:48–77

    Article  Google Scholar 

  • González-Pelayo O, Andreu V, Gimeno-García E, Campo J, Rubio JL (2010a) Effects of fire and vegetation cover on hydrological characteristics of a Mediterranean shrubland soil. Hydrol Process 24:1504–1513

    Article  Google Scholar 

  • González-Pelayo O, Andreu V, Gimeno-García E, Campo J, Rubio JL (2010b) Rainfall influence on plot-scale runoff and soil loss from repeated burning in a Mediterranean-shrub ecosystem, Valencia, Spain. Geomorphology 118:444–452

    Article  Google Scholar 

  • González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter—a review. Environ Int 30(6):855–870

    Article  PubMed  Google Scholar 

  • Hubbert KR, Preisler HK, Wohlgemuth PM, Graham RC, Narog MG (2006) Prescribed burning effects on soil physical properties and soil water repellency in a steep chaparral watershed, southern California, USA. Geoderma 130:284–298

    Article  Google Scholar 

  • Imeson AC, Verstraten JM, van Mulligen EJ, Sevink J (1992) The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena 19:345–361

    Article  Google Scholar 

  • IUSS Working Group WRB (2014) World Reference Base for Soil Resources (2014) International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

  • Jackson ML (1958) Soil chemical analysis. Prentice Hall Inc, London

    Google Scholar 

  • Johansen MP, Hakonson TE, Whicker FW, Breshears DD (2003) Pulsed redistribution of a contaminant following forest fire. J Environ Qual 32:2150–2157

    CAS  PubMed  Google Scholar 

  • Jordán A, Martínez-Zavala L, Bellinfante N (2008) Heterogeneity in soil hydrological response from different land cover types in southern Spain. Catena 74:137–143

    Article  Google Scholar 

  • Kawamoto K, Moldrup P, Komatsu T, de Jonge LW, Oda M (2007) Water repellency of aggregate size fractions of a volcanic ash soil. Soil Sci Soc Am 71(6):1658–1666

    Article  CAS  Google Scholar 

  • Letey J (2001) Causes and consequences of fire-induced soil water repellency. Hydrol Process 15:2867–2875

    Article  Google Scholar 

  • Lozano E, Jiménez-Pinilla P, Mataix-Solera J, Arcenegui V, Bárcenas GM, González-Pérez JA, García-Orenes F, Torres MP, Mataix-Beneyto J (2013) Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma 207–208:212–220

    Article  Google Scholar 

  • Maia P, Pausas JG, Arcenegui V, Guerrero C, Pérez-Bejarano A, Mataix-Solera J, Varela MET, Fernandes I, Pedrosa ET, Keizer JJ (2012) Wildfire effects on the soil seed bank of a maritime pine stand—the importance of fire severity. Geoderma 191:80–88

    Article  Google Scholar 

  • Malkinson D, Wittenberg L (2011) Post fire induced soil water repellency-modeling short and long-term processes. Geomorphology 125(1):186–192

    Article  Google Scholar 

  • MAPA (1986) Métodos oficiales de análisis (suelos). Ministerio de Agricultura, Pesca y Alimentación. Madrid, 531

  • Martínez-Murillo JF, Gabarrón-Galeote MA, Ruiz-Sinagoga JD (2013) Soil water repellency in Mediterranean rangelands under contrasted climatic, slope and patch conditions in southern Spain. Catena 110:196–206

    Article  Google Scholar 

  • Martínez-Zavala L, Jordán-López A (2009) Influence of different plant species on water repellency in mediterranean heatland soils. Catena 76:215–223

    Article  Google Scholar 

  • Mataix-Solera J, Doerr SH (2004) Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forest in southeastern Spain. Geoderma 118:77–88

    Article  CAS  Google Scholar 

  • Mataix-Solera J, Arcenegui V, Guerrero C, Mayoral AM, Morales J, González J, García-Orenes F, Gómez I (2007) Water repellency under different plant species in a calcareous forest soil in a semiarid mediterranean environment. Hydrol Process 21:2300–2309

    Article  Google Scholar 

  • Mataix-Solera J, Arcenegui V, Tessler N, Zornoza R, Wittenberg L, Martínez C, Caselles P, Pérez-Bejarano A, Malkinson D, Jordán MM (2013) Soil properties as key factors controlling water repellency in fire-affected areas: evidences from burned sites in Spain and Israel. Catena 108:6–13

    Article  Google Scholar 

  • Mazzoleni S, Bonanomi G, Giannino F, Incerti G, Dekker SC, Rietkerk M (2010) Modelling the effects of litter decomposition on tree diversity patterns. Ecol Model 221:2784–2792

    Article  Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Article  Google Scholar 

  • Paula S, Pausas JG (2008) Burning seeds: germinative response to heat treatments in relation to resprouting ability. J Ecol 96:543–552

    Article  Google Scholar 

  • Prats SA, MacDonald LH, Monteiro M, Ferreira AJD, Coelho COA, Keizer JJ (2012) Effectiveness of forest residue mulching in reducing post-fire runoff and erosion in a pine and a eucalypt plantation in north-central Portugal. Geoderma 191:115–124

    Article  Google Scholar 

  • Primo-Yufera E, Carrasco JM (1973) Química Agrícola I. Suelos y Fertilizantes. Alhambra, Madrid

  • Regalado CM, Ritter A (2005) Characterizing water dependent soil repellency with minimal parameter requirement. Soil Sci Soc Am 69(6):1955–1966

    Article  CAS  Google Scholar 

  • Robichaud PR, Hungerford RD (2000) Water repellency by laboratory burning of four northern Rocky mountain forest soils. J Hydrol 231–232:207–219

    Article  Google Scholar 

  • Rotondi A, Rossi F, Asunis C, Cesaraccio C (2003) Leaf xeromorphic adaptations of some plants of coastal Mediterranean macchia ecosystem. J Mediterr Ecol 4(3-4):25–35

    Google Scholar 

  • Roy JL, McGill WB (2000) Flexible conformation in organic matter coatings: an hypothesis about soil water repellence. Can J Soil Sci 80:143–152

    Article  Google Scholar 

  • Santos JM, Verheijen FGA, Wahren FT, Wahren A, Feger KH, Bernard-Jannin L, Rial-Rivas ME, Keizer JJ, Nunes JP (2013) Soil water repellency dynamics in pine and eucalypt plantations in Portugal—a high resolution time series. Land Degrad Dev. doi:10.1002/ldr.2251

    Google Scholar 

  • Shakesby RA, Bento CPM, Ferreira CSS, Ferreira AJD, Stoof CR, Urbanek E, Walsh RPD (2015) Impacts of prescribed fire on soil loss and soil quality: an assessment based on an experimentally-burned catchment in central Portugal. Catena 128:278–293

    Article  CAS  Google Scholar 

  • Stoof CR, Moore D, Ritsema CJ, Dekker LW (2011) Natural and fire-induced soil water repellency in a Portuguese shrubland. Soil Sci Soc Am J 75(6):2283–2295

    Article  CAS  Google Scholar 

  • Stoof CR, Moore D, Fernandes PM, Stoorvogel JJ, Fernandes RES, Ferreira AJD, Ritsema CJ (2013) Hot fire, cool soil. Geophys Res Lett 40:1–6

    Article  Google Scholar 

  • Tessler N, Wittenberg L, Malkinson D, Greenbaum N (2008) Fire effects and short-term changes in soil water repellency—Mt. Carmel, Israel. Catena 74:185–191

    Article  Google Scholar 

  • Úbeda X, Lorca M, Outeiro LR, Bernia S, Castellnou M (2005) Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain). Int J Wildland Fire 14:379–384

    Article  Google Scholar 

  • Vadilonga T, Úbeda X, Germann PF, Lorca M (2008) Effects of prescribed burnings on soil hydrological parameters. Hydrol Process 22:4249–4256

    Article  Google Scholar 

  • Valette J, Gomendi V, Marechal J, Houssard C, Guillon D (1994) Heat transfer in the soil during very low-intensity experimental fires: the role of duff and soil moisture content. Int J Wildland Fire 4(4):225–237

    Article  Google Scholar 

  • Verheijen FGA, Cammeraat LH (2007) The association between three dominant shrub species and water repellent soil, along a range of soil moisture contents in semi-arid Spain. Hydrol Process 21:2310–2316

    Article  Google Scholar 

  • Vilén T, Fernandes PM (2011) Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning. Environ Manag 48:558–567

    Article  Google Scholar 

  • Zavala LM, Granged AJP, Jordán A, Bárcenas-Moreno G (2010) Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma 158:366–374

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from Agreement Generalitat Valenciana-CSIC in CIDE (2005020112) “Impacto de los incendios forestales repetidos sobre los procesos de erosión hídrica del suelo y la recuperación de la cubierta vegetal. Seguimiento y evaluación en una estación permanente de campo”. We also thank to CERNAS (in Escola Superior Agrária de Coimbra) and CESAM (in University of Aveiro) for the technical support performed through the DESIRE project (FP6-2005-Global-4. Combat land degradation and Desertification). People involved in floristic/soil surveys were Pedro Bingre de Amaral, Marta López, Erica Castanheira, Manuela Carreiras, Tanya Esteves, Celia Bento, Vitor Tomé and Simon Drooger. The main author also thanks to Ana Vasques, Bruno Moreira, Maruxa Malvar, Sergio Prats, and the anonymous referees for their useful comments that mostly improved this manuscript. Acknowledgements are extended to the FLOPEN forestry association, headed by Ing. João Ribeiro, for the prescribed fire management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. González-Pelayo.

Additional information

Responsible Editor: Rafael S. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Pelayo, O., Gimeno-García, E., Ferreira, C.S.S. et al. Water repellency of air-dried and sieved samples from limestone soils in central Portugal collected before and after prescribed fire. Plant Soil 394, 199–214 (2015). https://doi.org/10.1007/s11104-015-2515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2515-4

Keywords

Navigation