Skip to main content
Log in

Do roots or shoots control cadmium accumulation in the hyperaccumulator Noccaea caerulescens?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

To rank the contributions of roots and shoots to Cd uptake by the hyperaccumulator Noccaea caerulescens, two hypotheses were tested: Shoots control the uptake through detoxification reactions; alternatively, roots do this through absorption and translocation.

Methods

In a first experiment, plants with the same final age were exposed for 1, 2 or 3 weeks to 0.5 μM Cd in hydroponics. In another experiment, either roots or shoots or both were pruned before the plants were exposed for 1 week to Cd at 0.5 μM in the nutrient solution.

Results

The first experiment showed that the Cd accumulation was driven by the root absorption combined with xylem loading, keeping the root Cd concentration constant. After root or/and shoot pruning, all the plants accumulated the same total quantity of Cd. After root pruning, the remaining roots increased their Cd absorption influx. Shoot pruning alone did not affect absorption or storage in roots and the pruned shoots accumulated as much Cd as the unpruned ones. Similar results were obtained for all major and minor nutrients.

Conclusions

Root absorption and xylem loading are the major processes controlling Cd hyperaccumulation in N. caerulescens, the shoot being a compartment in which the metal exported by the roots is stored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amtmann A, Blatt MR (2007) Regulation of ion transporters. In: Yeo AR, Flowers TJ (eds) Plant solute transport. Blackwell Publishing, Oxford

    Google Scholar 

  • Amtmann A, Blatt MR (2009) Regulation of macronutrient transport. New Phytol 181:35–52

    Article  CAS  PubMed  Google Scholar 

  • Bar-Tal A, Feigin A, Sheinfeld S, Rosenberg R, Sternbaum B, Rylski I, Pressman E (1995) Root restriction and N-NO3 solution concentration effects on nutrient uptake, transpiration and dry matter production of tomato. Sci Hortic 63:195–208

  • Brouwer R (1983) Functional equilibrium: sense or non-sense? Neth J Agric Sci 31:335–348

    Google Scholar 

  • Buckley WT, Buckley KE, Huang J (2010) Root cadmium desorption methods and their evaluation with compartmental modeling. New Phytol 188:280–290

    Article  CAS  PubMed  Google Scholar 

  • Caradus JR, Snaydon RW (1986) Plant factors influencing phosphorus uptake by white clover from solution culture. Plant Soil 93:165–174

    Article  Google Scholar 

  • Clemens S, Aarts MGM, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775

  • Craciun AR, Meyer C-L, Chen J, Roosens N, De Groodt R, Hilson P, Verbruggen N (2012) Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. J Exp Bot 63:4179–4189

    Article  CAS  PubMed  Google Scholar 

  • Custos J-M, Moyne C, Treillon T, Sterckeman T (2014) Contribution of dissociation of Cd complexes and direct absorption to cadmium root uptake. Plant Soil 374:497–512

    Article  CAS  Google Scholar 

  • Dodd I (2005) Root-to-shoot signalling: assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta. Plant Soil 274:251–270

    Article  CAS  Google Scholar 

  • Gonneau C, Genevois N, Frérot H, Sirguey C, Sterckeman T (2014) Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant Soil 384:271–287

    Article  CAS  Google Scholar 

  • Guimarães MA, Gustin JL, Salt DE (2009) Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens. New Phytol 184:323–329

    Article  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motten P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–396

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Masood A, Khan NA (2012) Analyzing the significance of defoliation in growth, photosynthetic compensation and source-sink relations. Photosynthetica 50:161–170

    Article  CAS  Google Scholar 

  • Jiang RF, Ma DY, Zhao FJ, McGrath SP (2005) Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol 167:805–814

    Article  CAS  PubMed  Google Scholar 

  • Jungk A, Barber SA (1975) Plant age and the phosphorus uptake characteristics of trimmed and untrimmed corn root systems. Plant Soil 42:227–239

    Article  CAS  Google Scholar 

  • Koopmans GF, Römkens PFAM, Fokkema MJ, Song J, Luo YM, Japenga J, Zhao FJ (2008) Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156:905–914

    Article  CAS  PubMed  Google Scholar 

  • Küpper H, Parameswaran A, Leitenmaier B, Trtílek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    Article  PubMed  Google Scholar 

  • Lin Z, Schneider A, Nguyen C, Sterckeman T (2014) Can ligand addition to soil enhance Cd phytoextraction? A mechanistic model study. Environ Sci Pollut Res 21:12811–12826

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GE (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60

    Article  CAS  Google Scholar 

  • Lovy L (2012) Hyperaccumulation du Cd par Noccaea caerulescens : cinétique, répartition et prédiction. Ecole Doctorale Ressources, Procédés, Produits et Environnement. Université de Lorraine, Vandoeuvre-lès-Nancy

  • Lovy L, Latt D, Sterckeman T (2013) Cadmium uptake and partitioning in the hyperaccumulator Noccaea caerulescens exposed to constant Cd concentrations throughout complete growth cycles. Plant Soil 362:345–354

    Article  CAS  Google Scholar 

  • Maathuis FJ (2007) Transport across plant membranes. In: Yeo AR, Flowers TJ (eds) Plant solute transport. Blackwell Publishing, Oxford

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Maxted AP, Black CR, West HM, Crout NMJ, McGrath SP, Young SD (2007) Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: development of a predictive model. Environ Pollut 150:363–372

    Article  CAS  PubMed  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  CAS  PubMed  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milner MJ, Mitani-Ueno N, Yamaji N, Yokosho K, Craft E, Fei Z, Ebbs S, Zambrano MC, Ma JF, Kochian LV (2014) Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Plant J 78:398–410

    Article  CAS  PubMed  Google Scholar 

  • Peer WA, Mahmoudian M, Freeman JL, Lahner B, Richards EL, Reeves RD, Murphy AS, Salt DE (2006) Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. New Phytol 172:248–260

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:595–607

    Article  CAS  Google Scholar 

  • Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3:145–172

    Article  CAS  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    Article  CAS  Google Scholar 

  • Sterckeman T, Perriguey J, Caël M, Schwartz C, Morel JL (2004) Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: Consequences for the assessment of the soil quantity and capacity factors. Plant Soil 262:289–302

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Juraniec M, Baliardini C, Meyer C-L (2013) Tolerance to cadmium in plants: the special case of hyperaccumulators. BioMetals 26:633–638

    Article  CAS  PubMed  Google Scholar 

  • Zhao F-J, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–543

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the ANR 2011 CESA 008 01 funding. We are grateful to Romain Goudon for his help in analysing the samples and to Dr Christophe Robin for ameliorating the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibault Sterckeman.

Additional information

Responsible Editor: Henk Schat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterckeman, T., Goderniaux, M., Sirguey, C. et al. Do roots or shoots control cadmium accumulation in the hyperaccumulator Noccaea caerulescens?. Plant Soil 392, 87–99 (2015). https://doi.org/10.1007/s11104-015-2449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2449-x

Keywords

Navigation