Skip to main content
Log in

Traditional and molecular detection methods reveal intense interguild competition and other multitrophic interactions associated with native entomopathogenic nematodes in Swiss tillage soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

As part of a research consortium that explores ways to improve soil health, we study how entomopathogenic nematodes (EPNs) can be better exploited for the biological control of soil-dwelling insect pests in annual crops.

Methods

We evaluated how tillage might affect belowground interactions in two 30-year running Swiss field trials by combining traditional (insect bait) and molecular (novel real-time qPCR protocols) methods. Soil samples (April and October 2013) were evaluated for the presence and activity of EPN soil food web assemblage comprising 13 EPN species, six nematophagous fungi, one ectoparasitic bacterium, and the free-living nematodes (FLN) of the Acrobeloides group.

Results

Mortality of sentinel larvae, as well as qPCR analyses (for which we provide seven new primers/probes sets) found only trace levels of six EPN species, dominated by heterorhabditids species. Analysis of nematode progeny revealed that EPN compete intensely with FLN for insect cadavers. Overall, it appears that temperate annual cropping systems provide poor environments for EPN and that tillage does not negatively affect the natural occurrence of EPN.

Conclusions

Natural occurrence of EPN in Swiss tillage soils was very low, and augmentation may be a promising strategy to improve the control of root pests of annual crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams BJ, Nguyen KB (2002) Taxonomy and systematics. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, UK, pp 1–33

    Chapter  Google Scholar 

  • Alatorre-Rosas R, Kaya HK (1990) Interspecific competition between entomopathogenic nematodes in the genera Heterorhabditis and Steinernema for an insect host in sand. J Invertebr Pathol 55:179–188

    Article  Google Scholar 

  • Atkins SD, Clark I, Pande S, Hirsch PR, Kerry BR (2005) The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol Ecol 51:257–264

    Article  CAS  PubMed  Google Scholar 

  • Boemare N (2002) Biology, taxonomy and systematics of Xenorhabdus and Phtorhabdus. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, UK, pp 35–56

    Chapter  Google Scholar 

  • Campos-Herrera R, Gutiérrez C (2014) Steinernema feltiae intraspecific variability: infection process and sex-ratio. J Nematol 46:35–43

    PubMed Central  PubMed  Google Scholar 

  • Campos-Herrera R, Escuer M, Labrador S, Robertson L, Barrios L, Gutiérrez C (2007) Distribution of the entomopathogenic nematodes from La Rioja (Northern Spain). J Invertebr Pathol 95:125–139

    Article  PubMed  Google Scholar 

  • Campos-Herrera R, Gómez-Ros JM, Escuer M, Cuadra L, Barrios L, Gutiérrez C (2008) Diversity, occurrence, and life characteristics of natural entomopathogenic nematode populations from La Rioja (Northern Spain) under different agricultural management and their relationships with soil factors. Soil Biol Biochem 40:1474–1484

    Article  CAS  Google Scholar 

  • Campos-Herrera R, El-Borai FE, Stuart RJ, Graham JH, Duncan LW (2011a) Entomopathogenic nematodes, phoretic Paenibacillus spp., and the use of real time quantitative PCR to explore soil food webs in Florida citrus groves. J Invertebr Pathol 108:30–39

    Article  PubMed  Google Scholar 

  • Campos-Herrera R, Johnson EG, El-Borai FE, Stuart RJ, Graham JH, Duncan LW (2011b) Long-term stability of entomopathogenic nematode spatial patterns measured by sentinel insects and real-time PCR assays. Ann App Biol 158:55–68

    Article  CAS  Google Scholar 

  • Campos-Herrera R, El-Borai FE, Larry LW (2012) Wide interguild relationships among entomopathogenic and free-living nematodes in soil as measured by real time qPCR. J Invertebr Pathol 111:126–135

    Article  PubMed  Google Scholar 

  • Campos-Herrera R, Ali JG, Díaz BM, Duncan LW (2013a) Analyzing spatial patterns linked to the ecology of herbivores and their natural enemies in the soil. Frontiers Plant Sci 4(378):1–18

    Google Scholar 

  • Campos-Herrera R, Pathak E, El-Borai FE, Stuart RJ, Gutiérrez C, Rodríguez-Martín JA, Graham JH, Duncan LW (2013b) Geospatial patterns of soil properties and the biological control potential of entomopathogenic nematodes in Florida citrus groves. Soil Biol Biochem 66:163–174

    Article  CAS  Google Scholar 

  • Campos-Herrera R, Pathak E, El-Borai FE, Schumann A, Abd-Elgawad MMM, Duncan LW (2013c) New citriculture system suppresses native and augmented entomopathogenic nematodes. Biol Control 66:183–194

    Article  Google Scholar 

  • Campos-Herrera R, El-Borai FE, Ebert TA, Schumann A, Duncan LW (2014) Management to control citrus greening alters the soil food web and severity of a pest-disease complex. Biol Control 76:41–51

    Article  Google Scholar 

  • Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, Sternberg PW (2012) An entomopathogenic nematode by any other name. PLoS Pathogens 8:e1002527

  • Dolinski C, Choo HY, Duncan LW (2012) Grower acceptance of entomopathogenic nematodes: case studies on three continents. J Nematol 44:226–235

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duncan LW, Dunn DC, Bague G, Nguyen K (2003) Competition between entomopathogenic and free-living bactivorous nematodes in larvae of the weevil Diaprepes abbreviatus. J Nematol 35:187–193

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duncan LW, Graham JH, Zellers J, Bright D, Dunn DC, El-Borai FE, Porazinska DL (2007) Food web responses to augmenting the entomopathogenic nematodes in bare and animal manure-mulched soil. J Nematol 39:176–189

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duncan LW, Stuart RJ, El-Borai FE, Campos-Herrera R, Pathak E, Graham JH (2013) Modifying orchard planting sites conserves entomopathogenic nematodes, reduces weevil herbivory and increases citrus tree growth, survival and fruit yield. Biol Control 64:26–36

    Article  Google Scholar 

  • Ekmen ZI, Hazir S, Cakmak I, Ozer N, Karagoz M, Kaya HK (2010) Potential negative effects on biological control by Sancassania polyphyllae (Acari: Acaridae) on an entomopathogenic nematode species. Biol Control 54:166–171

    Article  Google Scholar 

  • El-Borai FE, Duncan LW, Preston JF (2005) Bionomics of a phoretic association between Paenibacillus sp. and the entomopathogenic nematode Steinernema diaprepesi. J Nematol 37:18–25

    PubMed Central  CAS  PubMed  Google Scholar 

  • El-Borai FE, Brentu CF, Duncan LW (2007) Augmenting entomopathogenic nematodes in soil from a Florida citrus orchard: non-target effects of a trophic cascade. J Nematol 39:203–210

    PubMed Central  CAS  PubMed  Google Scholar 

  • Enright MR, Griffin CT (2004) Specificity of association between Paenibacillus spp. and the entomopathogenic nematodes, Heterorhabditis spp. Micro Ecol 48:414–423

    Article  CAS  Google Scholar 

  • Enright MR, McInerney JO, Griffin CT (2003) Characterization of endospore-forming bacteria associated with entomopathogenic nematodes, Heterorhabditis spp., and description of Paenibacillus nematophilus sp. nov. Inter J Syst Evol Microbiol 53:435–441

    Article  CAS  Google Scholar 

  • Félix M-A, Vierstraete A, Vanfleteren J (2001) Three biological species closely related to Rhabditis (Oscheius) pseudodolichura Körner in Osche, 1952. J Nematol 33:104–109

    PubMed Central  PubMed  Google Scholar 

  • Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS, Meyer MS, Longcore JE, Simmons DR, Schmidt SK (2009) Evidence that chytrids dominate fungal communities at high-elevation soils. Proc Nat Acad Sci 106:18315–18320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Georgis R, Koppenhöfer AM, Lacey LA, Bélair G, Duncan LW, Grewal PS, Samish M, Tan L, Torr P, van Tol RWHM (2006) Successes and failures in the use of parasitic nematodes for pest control. Biol Control 38:103–123

    Article  Google Scholar 

  • Gray NF (1988) Fungi attacking bermiform nematodes. In: Poinar GO Jr, Jansson H-B (eds) Diseases of nematodes, vol II. CRC Press, Boca Raton, pp 3–38

    Google Scholar 

  • Greenwood CM, Barbercheck ME, Brownie C (2011) Short term response of soil microinvertebrates to application of entomopathogenic nematode-infected insects in two tillage systems. Pedobiologia 54:177–186

    Article  Google Scholar 

  • Griffin CT (2012) Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: traits contributing to nematode fitness and biocontrol efficacy. J Nematol 44:177–184

    PubMed Central  PubMed  Google Scholar 

  • Griffin CT, O’ Callaghan KM, Dix I (2001) A self-fertile species of Steinernema from Indonesia: fighter evidence of convergent evolution amongst entomopathogenic nematodes? Parasitology 122:181–186

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez C, Campos-Herrera R, Jiménez J (2008) Comparative study of selected agrochemical products activity on Steinernema feltiae (Rhabditida: Steinernematidae). Biocontr Sci Technol 18:101–108

    Article  Google Scholar 

  • Hominick WM (2002) Biogeography. In: Gaugler R (ed), Entomopathogenic nematology, CABI Publishing, Wallingford, UK, pp: 115–143.

  • Jaffee BA, Strong DR (2005) Strong bottom-up and weak top-down effects in soil: nematode-parasitized insects and nematode-trapping fungi. Soil Biol Biochem 37:1011–1021

    Article  CAS  Google Scholar 

  • Jaffee BA, Ferris H, Scow KM (1998) Nematode-trapping fungi in organic and conventional cropping systems. Pytophatology 88:344–350

    Article  CAS  Google Scholar 

  • Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Rep 48:492

    Google Scholar 

  • Kaya HK, Aguillera MM, Alumai A, Choo HY, de la Torre M, Fodor A, Ganguly S, Hazir S, Lakatos T, Pye A, Wilson M, Yamanaka S, Yang H, Ehlers R-U (2006) Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biol Control 38:134–155

    Article  Google Scholar 

  • Kondo E (1989) Studies on the infectivity and propagation of entomogenous nematodes Steinernema spp. (Rhabditida: Steinernematidae) in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Bull Fac Agric Saga Univ 67:1–87

    Google Scholar 

  • Kramer I, Hirschy O, Grunder JM (2001)Survey of baited insect parasitic nematodes from the Swiss lowland. In: EUR 19696-COST ACTION 819. Developments in entomopathogenic nematode/bacterial research.Proceedings of the workshop at National University of Ireland Maynooth. 13–15 April 2000.

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW2 and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JL, Hoy CW, Grewal PS (2006) Spatial and temporal distribution of endemic entomopathogenic nematodes in a heterogeneous vegetable production landscape. Biol Control 37:247–255

    Article  Google Scholar 

  • Lewis EE, Campbell J, Griffin C, Kaya HK, Peters A (2006) Behavioral ecology of entomopathogenic nematodes. Biol Control 38:66–79

    Article  Google Scholar 

  • Liang W, Zhang X, Li Q, Jiang Y, Ou W, Neher DA (2005) Vertical distribution of bacterivorous nematodes under different land uses. J Nematol 37:254–258

    PubMed Central  PubMed  Google Scholar 

  • Millar LC, Barbercheck M (2002) Effects of tillage practices on entomopathogenic nematodes in a corn agroecosystem. Biol Control 25:1–11

    Article  Google Scholar 

  • Mráček Z, Půža V, Nermut J (2014) Steinernema poinari sp. n. (Nematoda: Steinernematidae) a new entomopathogenic nematode from the Czech Republic. Zootaxa 3760:336–350

    Article  PubMed  Google Scholar 

  • Nguyen KB (2007) Methodology, morphology and identification. In: Nguyen KB, Hunt DJ (eds.) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts, Nematology Monographs and Perspectives, Vol. 5, Leiden-Boston: Brill, Leiden (The Netherlands), pp: 59–119.

  • Nguyen KB, Hunt DJ Mraček Z (2007) Steinernematidae: species descriptions. In: Nguyen KB, Hunt DJ (eds.) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Nematology Monographs and Perspectives, vol. 5, Leiden-Boston: Brill, Leiden (The Netherlands), pp: 121–609.

  • Pathak E, El-Borai FE, Campos-Herrera R, Jonhson EG, Stuart RJ, Graham JH, Duncan LW (2012) Use of real-time PCR to discriminate predatory and saprophagous behavior by nematophagous fungi. Fungal Biol 116:563–573

    Article  CAS  PubMed  Google Scholar 

  • Persmark L, Blank A, Jansson H (1996) Population dynamics of nematophagous fungi and nematodes in arable soil: vertical and seasonal fluctuations. Soil Biol Biochem 28:1005–1014

    Article  CAS  Google Scholar 

  • Půža V, Mráček Z (2009) Mixed infection of Galleria mellonella with two entomopathogenic nematodes (Nematoda: Rhabditida) species: Steinernema affine benefits from the presence of Steinernema kraussei. J Invertebr Pathol 102:40–43

    Article  PubMed  Google Scholar 

  • Rooij-van D, der Goes PCEM, van der Putten WH, van Dijk C (1995) Analysis of nematodes and soil-borne fungi from Ammophila arenaria (Marram grass) in Dutch coastal foredunes by multivariate techniques. Eur J Plant Pathol 101:149–162

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds.), Bioinformatics methods and protocols: methods in molecular biology. Humana Press. Totowa, (NJ, USA), pp: 365–386.

  • Steiner WA (1996) Distribution of entomopathogenic nematodes in the Swiss Alps. Rev Suisse Zool 103:439–452

    Google Scholar 

  • Stuart RJ, Barbercheck ME, Grewal PS, Taylor RAJ, Hoy CW (2006) Population biology of entomopathogenic nematodes: concepts, issues, and models. Biol Control 38:80–102

    Article  Google Scholar 

  • Sturhan D, Spiridonov S, Mrácek Z (2005) Steinernema silvaticum sp. n. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Europe. Nematology 7:227–241

    Article  Google Scholar 

  • Sugar DR, Murfin KE, Chaston JM, Andersen AW, Richards GR, de Léon L, Baum JA, Clinton WP, Forst S, Goldman BS, Krasomil-Osterfeld KC, Slater S, Stock SP, Goodrich-Blair H (2012) Phenotypic variation and host interactions of Xenorhabdus bovienii SSe2004, the entomopathogenic symbiont of Steinernema jollieti nematode. Environ Microbiol 14:924–939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torr P, Spiridonov SE, Heritage S, Wilson MJ (2007) Habitat associations of two entomopathogenic nematodes: a quantitative study using real-time quantitative polymerase chain reactions. J Anim Ecol 76:238–245

    Article  PubMed  Google Scholar 

  • Ulug D, Hazir S, Kaya HK, Lewis E (2014) Natural enemies of natural enemies: the potential top-down impact of predators on entomopathogenic nematode populations. Entomological Entomol 39:462–469

    Article  Google Scholar 

  • White GF (1927) A method for obtaining infective nematode larvae from cultures. Science 66:302–303

    Article  CAS  PubMed  Google Scholar 

  • Woodring, J.L., Kaya, H.K., 1988. Steinernematid and Heterorhabditid nematodes: a handbook of techniques. Southern Coop. Ser. Bull., Arkansas Agric. Exp. Sta. Fayetteville, Arkansas.

  • Zhang LM, Liu XZ, Zhu SF, Chen SY (2006) Detection of the nematophagous fungus Hirsutella rhossiliensis in soil by real-time PCR and parasitism bioassay. Biol Control 36:316–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. L. W. Duncan, F.E. El-Borai, and D. Shapiro-Ilan for providing EPN and NF populations. The authors also appreciate the field assistance of Neil Villard during the first sampling time and the help provided by Dr. C. Praz and different members of the FARCE and E-vol in the molecular biology laboratory. We also thank the members of the Soil and Vegetation laboratory (Universitz of Neuchâtel)for sharing their equipment and installations during the processing of the samples. This study was supported by the NRP68 program “Sustainable use of soil as a resource” (project no. 143065), Swiss National Science Foundation. G.J. was supported by a PhD assistantship from the University of Neuchâtel (Switzerland), and X. C. was awarded with a PhD fellowship from the Commission Fédérale de Bourses pour Etudiants Etrangères CFBE (Confédération Suisse).

Conflict of interest

The authors declare that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Campos-Herrera.

Additional information

Responsible Editor: Juha Mikola.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 21 kb)

ESM 2

(DOCX 21 kb)

ESM 3

(DOCX 22 kb)

ESM 4

(DOCX 21 kb)

ESM 5

(DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos-Herrera, R., Jaffuel, G., Chiriboga, X. et al. Traditional and molecular detection methods reveal intense interguild competition and other multitrophic interactions associated with native entomopathogenic nematodes in Swiss tillage soils. Plant Soil 389, 237–255 (2015). https://doi.org/10.1007/s11104-014-2358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2358-4

Keywords

Navigation