Skip to main content

Advertisement

Log in

Rice biomass production and carbon cycling in 13CO2 pulse-labeled microcosms with different soils under submerged conditions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Rice fields are an important source for the greenhouse gas methane. Plants play an essential role in carbon supply for soil microbiota, but the influence of the microbial community on carbon cycling is not well understood.

Methods

Microcosms were prepared using sand-vermiculite amended with different soils and sediments, and planted with rice. The microcosms at different growth stages were pulse-labeled with 13CO2 followed by tracing 13C in plant, soil and atmospheric carbon pools and quantifying the abundance of methanogenic archaea in rhizosphere soil.

Results

Overall, >85 % of the freshly assimilated carbon was allocated in aboveground plant biomass, approximately 10 % was translocated into the roots and < 2 % was recovered in soil organic matter, independently from soil type. Only about 0.3 % was transformed to CH4, but emission of 13C-labeled CH4 started immediately and 13C enrichment revealed that plant-derived carbon was an important source for methanogenesis. The results further demonstrated that carbon assimilation and translocation processes, microbial abundance and gas emission were not only affected by the plant growth stage, but also by the content and type of soil in which the rice plants grew.

Conclusions

The study illustrates the close ties between plant physiology, soil properties and microbial communities for carbon turnover and ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001a) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol 3:139–148

    Article  CAS  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Rennenberg H (2001b) Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil 230:77–86

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere [Review]. FEMS Microbiol Ecol 68:1–13

    Article  PubMed  CAS  Google Scholar 

  • Brand WA (1996) High precision isotope ratio monitoring techniques in mass spectrometry. J Mass Spectrom 31:225–235

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann N, Gessler A, Kayler Z, Keel SG, Badeck F, Barthel M, Boeckx P, Buchmann N, Brugnoli E, Esperschütz J, Gavrichkova O, Ghashghaie J, Gomez-Casanovas N, Keitel C, Knohl A, Kuptz D, Palacio S, Salmon Y, Uchida Y, Bahn M (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489

    Article  Google Scholar 

  • Burggraf S, Huber H, Stetter KO (1997) Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol 47:657–660

    Article  PubMed  CAS  Google Scholar 

  • Chanton JP, Bauer JE, Glaser PA, Siegel DI, Kelley CA, Tyler SC, Romanowicz EH, Lazrus A (1995) Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochim Cosmochim Acta 59:3663–3668

    Article  CAS  Google Scholar 

  • Chanton JP, Whiting GJ, Blair NE, Lindau CW, Bollich PK (1997) Methane emission from rice: stable isotopes, diurnal variations, and CO2 exchange. Glob Biogeochem Cycles 11:15–27

    Article  CAS  Google Scholar 

  • Clode PL, Kilburn MR, Jones DL, Stockdale EA, Cliff JB III, Herrmann AM, Murphy DV (2009) In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiol 151:1751–1757

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63

    Article  CAS  Google Scholar 

  • Dannenberg S, Conrad R (1999) Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochem 45:53–71

    Google Scholar 

  • Ding WX, Cai ZC, Tsuruta H, Li XP (2003) Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere 51:167–173

    Article  PubMed  CAS  Google Scholar 

  • Dorodnikov M, Knorr K, Kuzyakov Y, Wilmking M (2011) Plant-mediated CH4 transport and contribution of photosynthates to methanogenesis at a boreal mire: a 14C pulse-labeling study. Biogeosciences 8:2365–2375

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fischer H, Eckhardt KU, Meyer A, Neumann G, Leinweber P, Fischer K, Kuzyakou Y (2010) Rhizodeposition of maize: short-term carbon budget and composition. J Plant Nutr Soil Sci 173:67–79

    Article  CAS  Google Scholar 

  • Ge T, Yuan H, Zhu H, Wu X, Nie S, Liu C, Tong C, Wu J, Brookes P (2012a) Biological carbon assimilation and dynamics in a flooded rice - soil system. Soil Biol Biochem 48:39–46

    Article  CAS  Google Scholar 

  • Ge ZM, Zhou X, Kellomäki S, Biasi C, Wang KY, Peltola H, Martikainen PJ (2012b) Carbon assimilation and allocation (13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and CO2 through a growing season. Environ Exp Bot 75:150–158

    Article  CAS  Google Scholar 

  • Grosskopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stat Circ 347:1–32

    Google Scholar 

  • Holzapfel-Pschorn A, Conrad R, Seiler W (1985) Production, oxidation and emission of methane in rice paddies. FEMS Microbiol Ecol 31:343–351

    Article  CAS  Google Scholar 

  • Joabsson A, Christensen TR (2001) Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Glob Chang Biol 7:919–932

    Article  Google Scholar 

  • Kankaala P, Käki T, Mäkelä S, Ojala A, Pajunen H, Arvola L (2005) Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes. Glob Chang Biol 11:145–153

    Article  Google Scholar 

  • Ke X, Lu Y, Conrad R (2014) Different behavior of methanogenic archaea and Thaumarchaeota in rice field microcosms. FEMS Microbiol Ecol 87:18–29

    Article  PubMed  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, Brass M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Murase J, Lu YH (2004) Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4) [Review]. Soil Biol Biochem 36:1399–1416

    Article  CAS  Google Scholar 

  • King JY, Reeburgh WS (2002) A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra. Soil Biol Biochem 34:173–180

    Article  CAS  Google Scholar 

  • King JY, Reeburgh WS, Thieler KK, Kling GW, Loya WM, Johnson LC, Nadelhoffer KJ (2002) Pulse-labeling studies of carbon cycling in Arctic tundra ecosystems: The contribution of photosynthates to methane emission. Global Biogeochem Cycles 16: 1062-doi:10.1029/2001GB001456

  • Krüger M, Frenzel P, Kemnitz D, Conrad R (2005) Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol Ecol 51:323–331

    Article  PubMed  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Ehrensberger H, Stahr K (2001) Carbon partitioning and below-ground translocation by Lolium perenne. Soil Biol Biochem 33:61–74

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls [review]. Glob Chang Biol 16:3386–3406

    Article  Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Article  Google Scholar 

  • LeMer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: A review [Review]. Eur J Soil Biol 37:25–50

    Article  CAS  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies [Review]. FEMS Microbiol Rev 24:625–645

    Article  PubMed  CAS  Google Scholar 

  • Lowe DC (2006) A green source of surprise. Nature 439:148–149

    Article  PubMed  CAS  Google Scholar 

  • Lu YH, Watanabe A, Kimura M (2002) Input and distribution of photosynthesized carbon in a flooded rice soil. Global Biogeochem Cycles 16: 1085-doi:10.1029/2002GB001864

  • Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate Flow in the Rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Marx M, Buegger F, Gattinger A, Marschner B, Zsolnay A, Munch JC (2007) Determination of the fate of 13C labelled maize and wheat rhizodeposit-C in two agricultural soils in a greenhouse experiment under 13C-CO2-enriched atmosphere. Soil Biol Biochem 39:3043–3055

    Article  CAS  Google Scholar 

  • Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH, Holland HD, Turekian KK (eds) Treatise on Geochemistry, vol 8, Biogeochemistry. Elsevier-Pergamon, Oxford, pp 317–424

    Google Scholar 

  • Meharg AA, Killham K (1991) A novel method of quantifying root exudation in the presence of soil microflora. Plant Soil 133:111–116

    Article  Google Scholar 

  • Minoda T, Kimura M (1994) Contribution of photosynthesized carbon to the methane emitted from paddy fields. Geophys Res Lett 21:2007–2010

    Article  CAS  Google Scholar 

  • Minoda T, Kimura M, Wada E (1996) Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields. J Geophys Res 101:21091–21097

    Article  CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and control. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Nguyen NV, Ferrero A (2006) Meeting the challenges of global rice production. Paddy Water Environ 4:1–9

    Article  Google Scholar 

  • Ostle N, Ineson P, Benham D, Sleep D (2000) Carbon assimilation and turnover in grassland vegetation using an in situ 13CO2 pulse labelling system. Rapid Commun Mass Spec 14:1345–1350

    Article  CAS  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    Article  CAS  Google Scholar 

  • R Development Core Team R (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramakrishnan B, Lueders T, Conrad R, Friedrich M (2000) Effect of soil aggregate size on methanogenesis and archaeal community structure in anoxic rice field soil. FEMS Microbiol Ecol 32:261–270

    Article  PubMed  CAS  Google Scholar 

  • Rice AL, Gotoh AA, Ajie HO, Tyler SC (2001) High-precision continuous-flow measurement of d13C and dD of atmospheric CH4. Anal Chem 73:4104–4110

    Article  PubMed  CAS  Google Scholar 

  • Sass RL, Fisher FM, Harcombe PA, Turner FT (1990) Methane production and emission in a Texas rice field. Glob Biogeochem Cycles 4:47–68

    Article  CAS  Google Scholar 

  • Sass RL, Fisher FM, Huang Y (2000) A process-based model for methane emissions from irrigated rice fields: Experimental basis and assumptions. Nutr Cycl Agroecosyst 58:249–258

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Molec Biol Rev 61:262–280

    CAS  Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E, Margesin R (1996) Methods in soil chemistry. Methods in Soil Biology. Springer, London, pp 397–416

    Google Scholar 

  • Schütz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res 94:16405–16416

    Article  Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74:6663–6671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tokida T, Adachi M, Cheng W, Nakajima Y, Fumoto T, Matsushima M, Nakamura H, Okada M, Sameshima R, Hasegawa T (2011) Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature. Glob Chang Biol 17:3327–3337

    Article  Google Scholar 

  • Vann CD, Megonigal JP (2003) Elevated CO2 and water depth regulation of methane emissions: Comparison of woody and non-woody wetland plant species. Biogeochem 63:117–134

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, VanderPutten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota [Review]. Science 304:1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Warembourg FR, Estelrich HD (2001) Plant phenology and soil fertility effects on belowground carbon allocation for an annual (Bromus madritensis) and a perannial (Bromus erectus) grass species. Soil Biol Biochem 33:1291–1303

    Article  CAS  Google Scholar 

  • Watanabe A, Machida N, Takahashi K, Kitamura S, Kimura M (2004) Flow of photosynthesized carbon from rice plants into the paddy soil ecosystem at different stages of rice growth. Plant Soil 258:151–160

    Article  CAS  Google Scholar 

  • White JR, Shannon RD, Weltzin JF, Pastor J, Bridgham SD (2008) Effects of soil warming and drying on methane cycling in a northern peatland mesocosm study. J Geophys Res -Biogeosci 113: G00A06-doi:10.1029/2007JG000609

  • Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364:794–795

    Article  CAS  Google Scholar 

  • Wu WX, Liu W, Lu HH, Chen YX, Devare M, Thies J (2009) Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities. FEMS Microbiol Ecol 67:93–102

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Tan H, Deng Y, Wu J, Xu X, Wang Y, Tang Y, Higashi T, Cui X (2010) Partitioning pattern of carbon flux in Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling. Glob Chang Biol 16:2322–2333

    Article  Google Scholar 

  • Yuan Q, Pump J, Conrad R (2012) Partitioning of CH4 and CO2 production originating from rice straw, soil and root organic carbon in rice microcosms. Plos One 7: e49073-doi:10.1371/journal.pone.0049073

Download references

Acknowledgments

We thank Dr. Jennifer Pratscher (University of Warwick, Coventry, United Kingdom) for taking part in qPCR analysis and Philip Weyrauch (University of Münster, Germany) for performing gas measurements during soil incubation experiments. We are also grateful to Dr. Elisabetta Lupotto (CRA-RIS, Vercelli, Italy) for providing rice seeds, Prof. Dr. Peter Frenzel (Max Planck Institute for Terrestrial Microbiology, Marburg, Germany) for supplying Chinese paddy soil, and Dr. Quan Yuan (Max Planck Institute for Terrestrial Microbiology, Marburg, Germany) for critically reading of the manuscript. This research was supported by the Research Center for Synthetic Microbiology (‘Synmikro’) of the Landes-Offensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz (LOEWE) and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Conrad.

Additional information

Responsible Editor: Paul Bodelier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pump, J., Conrad, R. Rice biomass production and carbon cycling in 13CO2 pulse-labeled microcosms with different soils under submerged conditions. Plant Soil 384, 213–229 (2014). https://doi.org/10.1007/s11104-014-2201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2201-y

Keywords

Navigation