Skip to main content
Log in

Topsoil organic matter properties in contrasted hedgerow vegetation types

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Hedges, semi-natural landscape components, have the ability to integrate both agronomic and environmental functions and to provide several ecosystem services. The aim of this study was to test whether hedgerow vegetation is a determinant of soil organic matter properties in ancient agricultural lands.

Methods

We complemented cluster analysis and ordination to determine the extent to which two types of hedges that were distinct in character-plant species also differed between each other in concentration and composition of two major constituents of soil organic matter, namely humic substances and dissolved organic matter.

Results

The two types of hedges were associated with significant differences in humic carbon content, hormone-like activity and molecular size of humic substances, which, in general, were more similar to those typical of forest than of agricultural soils. Moreover, we detected between-group differences in several phenolic acids.

Conclusions

Variation of the topsoil biochemical properties of hedges may be explained by variation in their vegetation characteristics, similar to other ecosystems. Spontaneous vegetation in hedges perform an important role in controlling the variability of surface soil properties that influence the evolution of soil organic matter and nutrient availability in agricultural lands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agus F, Cassel DK, Garrity DP (1997) Soil-water and soil physical properties under contour hedgerow systems on sloping oxisols. Soil Tillage Res 40(3–4):185–199

    Article  Google Scholar 

  • ARPAV (2013) Carta dei suoli della provincia di Padova. Provincia di Padova. ARPAV, Padova

    Google Scholar 

  • Aude E, Tybirk K, Pedersen MB (2003) Vegetation diversity of conventional and organic hedgerows in Denmark. Agric Ecosyst Environ 99(1–3):135–147

    Article  Google Scholar 

  • Batty LC, Baker AJM, Wheeler BD (2002) Aluminium and phosphate uptake by Phragmites australis: the role of Fe, Mn and Al root plaques. Ann Bot Lond 89(4):443–449

    Article  CAS  Google Scholar 

  • Baudry J, Bunce RGH, Burel F (2000) Hedgerows: an international perspective on their origin, function and management. J Environ Manag 60(1):7–22

    Article  Google Scholar 

  • Boutin C, Baril A, Martin PA (2008) Plant diversity in crop fields and woody hedgerows of organic and conventional farms in contrasting landscapes. Agric Ecosyst Environ 123(1–3):185–193

    Article  Google Scholar 

  • Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27

    Google Scholar 

  • Canellas LP, Olivares FL, Okorokova-Facanha AL, Facanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+ −ATPase activity in maize roots. Plant Physiol 130(4):1951–1957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carletti P, Vendramin E, Pizzeghello D, Concheri G, Zanella A, Nardi S, Squartini A (2009) Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant Soil 315(1–2):47–65

    Article  CAS  Google Scholar 

  • Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113(3–4):357–380

    Article  CAS  Google Scholar 

  • Corre MD, Schnabel RR, Shaffer JA (1999) Evaluation of soil organic carbon under forests, cool-season and warm-season grasses in the northeastern US. Soil Biol Biochem 31(11):1531–1539

    Article  CAS  Google Scholar 

  • Critchley CNR, Wilson LA, Mole AC, Astbury SS, Bhogal A (2010) Defra project BD5301. Final report. Restoration of herbaceous hedgerow flora: review and analysis of ecological factors and restoration techniques. Phase 1. Defra, London

    Google Scholar 

  • De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119(10):1674–1684

    Article  Google Scholar 

  • Deckers B, Hermy M, Muys B (2004) Factors affecting plant species composition of hedgerows: relative importance and hierarchy. Acta Oecol 26(1):23–37

    Article  Google Scholar 

  • Dell’Agnola G, Ferrari G, Maggioni A (1964) Gel filtrazione dell’humus. Nota. Frazionamento della sostanza organica del terreno mediante gel filtrazione con vari tipi di Sephadex. Ric Sci 34:347–352

    Google Scholar 

  • Drouineau G (1942) Dosage rapide du calcaire actif du sol: nouvelles données sur la séparation et la nature des fractions calcaires. Ann Agron 12:441–450

    CAS  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366

    Google Scholar 

  • Ellenberg H (1991) Zeigerwerte der Gefäßpflanzen (ohne Rubus). Scr Geobotanica 18:9–166

    Google Scholar 

  • Ertani A, Pizzeghello D, Baglieri A, Cadili V, Tambone F, Gennari M, Nardi S (2013) Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. J Geochem Explor 129:103–111

    Article  CAS  Google Scholar 

  • Esmenjand M, Esteoule J, Guyader J (1976) Étude pédologique des différents types de talus: considérations sur la différenciation des profils; essai de systématique. In: Missonnier J (ed) Les bocages: histoire, écologie, économie. Inra, ENSA, Université de Rennes, Rennes, France, pp 167–175

  • Follain S, Walter C, Legout A, Lemercier B, Dutin G (2007) Induced effects of hedgerow networks on soil organic carbon storage within an agricultural landscape. Geoderma 142(1–2):80–95

    Article  CAS  Google Scholar 

  • Follain S, Walter C, Bonte P, Marguerie D, Lefevre I (2009) A-horizon dynamics in a historical hedged landscape. Geoderma 150(3–4):334–343

    Article  Google Scholar 

  • Forman RTT, Baudry J (1984) Hedgerows and hedgerow networks in landscape ecology. Environ Manag 8(6):495–510

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis, part 1. Physical and mineralogical methods. Agronomy monograph, vol 9, 2nd edn. American Society of Agronomy/Soil Science Society of America, Madison, pp 383–411

    Google Scholar 

  • Gerzabek MK, Pichlmater F, Blochberger K, Schaffer K (1990) Use of C-13 mesurements in humus dynamics studies. In: International symposium on the use of stable isotopes in plant nutrition, soil fertility and environmental studies, IAEA-SM-303/42. Vienna, Austria, pp 1–11

  • Giardini L (2004) Productivity and sustainability of different cropping systems–40 years of experiments in Veneto Region (Italy). Patron Editore, Bologna

    Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006. World soil resources reports no. 103. FAO, Rome

    Google Scholar 

  • Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin R, Berry AM, Normand P, Domenach AM (2003) A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254(1):193–205

    Article  CAS  Google Scholar 

  • Hulugalle NR, Kang BT (1990) Effect of Hedgerow species in alley cropping systems on surface soil physical-properties of an Oxic Paleustalf in South-Western Nigeria. J Agric Sci 114:301–307

    Article  Google Scholar 

  • Isaac L, Wood CW, Shannon DA (2003) Hedgerow species and environmental conditions effects on soil total C and N and C and N mineralization patterns of soils amended with their prunings. Nutr Cycl Agroecosyst 65(1):73–87

    Article  CAS  Google Scholar 

  • Jannin L, Arkoun M, Ourry A, Laine P, Goux D, Garnica M, Fuentes M, San Francisco S, Baigorri R, Cruz F, Houdusse F, Garcia-Mina JM, Yvin JC, Etienne P (2012) Microarray analysis of humic acid effects on Brassica napus growth: involvement of N, C and S metabolisms. Plant Soil 359(1–2):297–319

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165(4):277–304

    Article  CAS  Google Scholar 

  • Kjeldahl J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z Anal Chem 22:366–382

    Article  Google Scholar 

  • Kuiters AT, Mulder W (1993) Water-soluble organic-matter in forest soils. 1. Complexing properties and implications for soil equilibria. Plant Soil 152(2):215–224

    Article  CAS  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using Canoco. Cambridge University Press, Cambridge

    Google Scholar 

  • Mallik AU, Pellissier F (2000) Effects of Vaccinium myrtillus on spruce regeneration: testing the notion of coevolutionary significance of allelopathy. J Chem Ecol 26(9):2197–2209

    Article  CAS  Google Scholar 

  • McCollin D, Jackson JI, Bunce RGH, Barr CJ, Stuart R (2000) Hedgerows as habitat for woodland plants. J Environ Manag 60(1):77–90

    Article  Google Scholar 

  • McDowell WH (2003) Dissolved organic matter in soils—future directions and unanswered questions. Geoderma 113(3–4):179–186

    Article  CAS  Google Scholar 

  • Metzger MJ, Bunce RGH, Jongman RHG, Mucher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14(6):549–563

    Article  Google Scholar 

  • Monokrousos N, Papatheodorou EM, Diamantopoulos JD, Stamou GP (2006) Soil quality variables in organically and conventionally cultivated field sites. Soil Biol Biochem 38(6):1282–1289

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M, da Silva JAT (2013) Biological effects of water-soluble soil phenol and soil humic extracts on plant systems. Acta Physiol Plant 35(2):309–320

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Reniero F, Rascio N (2000) Chemical and biochemical properties of humic substances isolated from forest soils and plant growth. Soil Sci Soc Am J 64(2):639–645

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34(11):1527–1536

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Bragazza L, Gerdol R (2003) Low-molecular-weight organic acids and hormone-like activity of dissolved organic matter in two forest soils in N Italy. J Chem Ecol 29(7):1549–1564

    Article  PubMed  CAS  Google Scholar 

  • Nardi S, Morari F, Berti A, Tosoni M, Giardini L (2004) Soil organic matter properties after 40 years of different use of organic and mineral fertilisers. Eur J Agron 21(3):357–367

    Article  Google Scholar 

  • Nardi S, Carletti P, Pizzeghello D, Muscolo A (2009) Biological activities of humic substances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, New Jersey, pp 305–340

    Chapter  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. American Societyof Agronomy, Madison, pp 421–422

    Google Scholar 

  • Petersen S, Axelsen JA, Tybirk K, Aude E, Vestergaard P (2006) Effects of organic farming on field boundary vegetation in Denmark. Agric Ecosyst Environ 113(1–4):302–306

    Article  Google Scholar 

  • Pizzeghello D, Nicolini G, Nardi S (2001) Hormone‐like activity of humic substances in Fagus sylvaticae forests. New Phytol 151(3):647–657

    Article  CAS  Google Scholar 

  • Pizzeghello D, Nicolini G, Nardi S (2002) Hormone-like activities of humic substances in different forest ecosystems. New Phytol 155(3):393–402

    Article  CAS  Google Scholar 

  • Pizzeghello D, Zanella A, Carletti P, Nardi S (2006) Chemical and biological characterization of dissolved organic matter from silver fir and beech forest soils. Chemosphere 65(2):190–200

    Article  PubMed  CAS  Google Scholar 

  • Pizzeghello D, Berti A, Nardi S, Morari F (2011) Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy. Agric Ecosyst Environ 141(1–2):58–66

    Article  CAS  Google Scholar 

  • Pizzeghello D, Francioso O, Ertani A, Muscolo A, Nardi S (2013) Isopentenyladenosine and cytokinin-like activity of different humic substances. J Geochem Explor 129:70–75

    Article  CAS  Google Scholar 

  • RCoreTeam (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S (2010) High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol 36(6):662–669

    Article  PubMed  CAS  Google Scholar 

  • Sitzia T (2007) Hedgerows as corridors for woodland plants: a test on the Po Plain, northern Italy. Plant Ecol 188:235–252

    Article  Google Scholar 

  • Sitzia T, Trentanovi G, Marini L, Cattaneo D, Semenzato P (2013) Assessment of hedge stand types as determinants of woody species richness in rural field margins. Iforest 6:201–208

    Article  Google Scholar 

  • Spohn M, Ermak A, Kuzyakov Y (2013) Microbial gross organic phosphorus mineralization can be stimulated by root exudates—a P-33 isotopic dilution study. Soil Biol Biochem 65:254–263

    Article  CAS  Google Scholar 

  • Stevenson FJ (1986) Cycles of soil (Carbon, nitrogen, phosphorus, sulfur, micronutrients). Wiley, New York

    Google Scholar 

  • Strobel BW, Hansen HCB, Borggaard OK, Andersen MK, Raulund-Rasmussen K (2001) Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeochemistry 56(1):1–26

    Article  CAS  Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity, and exchange coefficients. In: Sparks DL (ed) Methods of soil analysis. Part 2: Chemical properties, 3rd edn. Soil Science Society of America, Madison, pp 1201–1229

    Google Scholar 

  • Tan KH (2003) Humic matter in soil and the environment: principles and controversies. CRC Press, Boca Raton

    Book  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • USDA (2010) Keys to soil taxonomy 2010. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

  • Weber HE (1991) Zeigerwerte der Rubus-Arten. Scr Geobotanica 18:167–174

    Google Scholar 

  • Wehling S, Diekmann M (2008) Factors influencing the spatial distribution of forest plant species in hedgerows of North-western Germany. Biodivers Conserv 17(11):2799–2813

    Article  Google Scholar 

  • Wehling S, Diekmann M (2009) Hedgerows as an environment for forest plants: a comparative case study of five species. Plant Ecol 204(1):11–20

    Article  Google Scholar 

  • Wehling S, Diekmann M (2010) Prediction of changes in the occurrence of forest herbs in hedgerow networks along a climate gradient in north-western Europe. Biodivers Conserv 19(9):2537–2552

    Article  Google Scholar 

  • Zandonadi DB, Canellas LP, Facanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225(6):1583–1595

    Article  PubMed  CAS  Google Scholar 

  • Zsolnay A (2003) Dissolved organic matter: artefacts, definitions, and functions. Geoderma 113(3–4):187–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Giovanni Trentanovi and Andrea Rizzi for assisting with field surveys and we acknowledge the helpful comments of Stéphane Follain and one anonymous referee on earlier drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Pizzeghello.

Additional information

Responsible Editor: Klaus Butterbach-Bahl..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitzia, T., Pizzeghello, D., Dainese, M. et al. Topsoil organic matter properties in contrasted hedgerow vegetation types. Plant Soil 383, 337–348 (2014). https://doi.org/10.1007/s11104-014-2177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2177-7

Keywords

Navigation