Skip to main content

Advertisement

Log in

Bioactivity of humic acids isolated from vermicomposts at different maturation stages

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Vermicomposts are useful to improve environmental quality and sustainable agriculture. Moreover, it is enriched with highly bioactive humic acids (HAs)-like substances and can substitute no-renew source of humic substances to use as plant growth promoters in agriculture. The aim of this work was to evaluate the biological effects of HAs isolated at increasing vermicompost maturation stages.

Methods

Lateral root emergence, aqueous growth medium acidification and proton pumps of maize seedlings were used to monitor HAs bioactivity. Molecular conformation of the HAs was determined by size-exclusion and reverse-phase high performance liquid chromatography. We applied spectroscopy 13C-NMR on VC samples to follow the humification process.

Results

We observed a decrease of carbohydrate content and selective preservation of hydrophobic alkyl and aryl C components by 13C-NMR during vermicompost maturation. Apparent molecular weight distribution of HAs did not change with vermicompost maturation, but was possible observed increase on hydrophobic moieties.

Conclusion

After 60 days of vermicomposting, all HAs promotes lateral root emergence, acidification of growth aqueous medium and induction of proton pumps without changes on apparent molecular weight but with enhance on hydrophobic domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguiar NO, Canellas LP, Dobbss LB, Zandonadi DB, Olivares FL, Façanha AR (2009) Distribuição de massa molecular de ácidos húmicos e promoção do crescimento radicular. Rev Bras Ci Solo 33:1613–1623

    Article  CAS  Google Scholar 

  • Albuzio A, Nardi S, Gulli A (1989) Plant growth regulator activity of small molecular size humic fractions. Sci Total Environ 81(82):671–674

    Article  Google Scholar 

  • Arancon NQ, Edwards CA, Babenko A, Cannon J, Galvis P, Metzger JD (2008) Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Appl Soil Ecol 39:91–99

    Article  Google Scholar 

  • Bouma TJ, Nilsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 218:185–196

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Okorokova-Façanha A, Façanha AR (2002) Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957

    Article  PubMed  CAS  Google Scholar 

  • Canellas LP, Teixeira-Júnior LRL, Dobbss LB, Silva CA, Medici LO, Zandonadi DB, Façanha AR (2008) Humic acids crossinteractions with root and organic acids. Ann Appl Biol 153:157–166

    CAS  Google Scholar 

  • Canellas LP, Dobbss LB, Santos GA, Olivares FL, Spaccini R, Piccolo A (2009) Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian oxisols. Soil Sci 174:611–620

    Article  CAS  Google Scholar 

  • Canellas LP, Piccolo A, Dobbss LB, Olivares FL, Spaccini R, Zandonadi DB, Façanha AR (2010) Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acids. Chemosphere 78:457–466

    Article  PubMed  CAS  Google Scholar 

  • Canellas LP, Dantas DJ, Aguiar NO, Peres LEP, Zsögön A, Olivares FL, Dobbss LB, Façanha AR, Nebbioso A, Piccolo A (2011) Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Ann Appl Biol 159:202–211

    Article  CAS  Google Scholar 

  • Dobbss LB, Canellas LP, Olivares FL, Aguiar NO, Azevedo M, Peres LEP, Spaccini R, Piccolo A, Façanha AR (2010) Bioactivity of Chemically Transformed Humic Matter from Vermicompost on Plant Root Growth. J Agric Food Chem 58:3681–3688

    Article  PubMed  CAS  Google Scholar 

  • Egeberg PK, Alberts JJ (2002) Determination of hydrophobicity of NOM by RP-HPLC, and the effect of pH and ionic strength. Water Res 36:4997–5004

    Article  PubMed  CAS  Google Scholar 

  • Hager A, Debus G, Edel G, Stransky H, Serrano R (1991) Auxin induces exocytosis and the rapid synthesis of a high turnover pool of plasma-membrane H+-ATPase. Planta 185:527–537

    Article  CAS  Google Scholar 

  • Inbar Y, Chen Y, Hadar Y (1989) Solid stat carbon 13 nuclear magnetic resonance and infrared spectroscopy of composted organic matter. Soil Sci Soc Am J 53:1695–1701

    Article  CAS  Google Scholar 

  • Jimenez EI, Garcia VP (1992) Determination of maturity indices for city refuse composts. Agric Ecosyst Environ 38:331–343

    Article  Google Scholar 

  • Keiji J, Martim SA, Navarro EC, Pérez-Alfocea F, Hernandez T, Garcia C, Aguiar NO, Canellas LP (2011) Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant Soil. doi:10.1007/s11104-011-1024-3

  • Muscolo A, Panuccio MR, Abenavoli MR, Concheri G, Nardi S (1996) Effect of molecular complexity and acidity of earthworm faeces humic fractions on glutamate dehydrogenase, glutamine synthetase, and phosphenolpyruvate carboxylase in Daucus carota α II cell. Biol Fertil Soils 22:83–88

    Article  CAS  Google Scholar 

  • Muscolo A, Bovalo F, Gionfriddo F, Nardi S (1999) Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biol Biochem 31:1303–1311

    Article  CAS  Google Scholar 

  • Muscolo A, Sidari M, Francioso O, Tugnoli V, Nardi S (2007) Biological activity of humic substances is related to their chemical structure. Soil Sci Soc Am J 71:75–85

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34:1527–1536

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Remiero F, Rascio N (2000) Chemical and biochemical properties of humic substances isolated from forest soils and plant growth. Soil Sci Soc Am J 64:639–45

    Article  CAS  Google Scholar 

  • Nardi S, Muscolo A, Vaccaro S, Baiano S, Spaccini R, Piccolo A (2007) Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biol Biochem 39:3138–3146

    Article  CAS  Google Scholar 

  • Nardi S, Carletti P, Pizzeghello D, Muscolo A (2009) Biological Activities of humic substances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical process involving natural nonliving organic matter in environmental systems. Wiley, New Jersey, pp 305–340

    Chapter  Google Scholar 

  • Nebbioso A, Piccolo A (2011) Basis of a humeomics science: chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromolecules 12:1187–1199

    Article  PubMed  CAS  Google Scholar 

  • Piccolo A (1996) Humus and soil conservation. In Humic Substances in Terrestrial Ecosystems. A. Piccolo (ed.). Elsevier, Amsterdam, The Netherlands, pp. 225–264

    Chapter  Google Scholar 

  • Piccolo A (2002) The supramolecular structure of humic substances. A novel understanding of humus chemistry and implications in soil science. Adv Agron 75:57–134

    Article  CAS  Google Scholar 

  • Piccolo A, Conte P, Cozzolino A (2001) Chromatographic and spectrophotometric properties of dissolved humic substances compared with macromolecular polymers. Soil Science 166:174–185

    Google Scholar 

  • Piccolo A, Conte P, Trivellone E, Van Lagen B, Buurman P (2002) Reduced heterogeneity of a lignite humic acid by preparative HPSEC following interaction with an organic acid. Characterization of size separates by PYR-GC-MS and 1H-NMR spectroscopy. Environ Sci Technol 36:76–84

    Article  PubMed  CAS  Google Scholar 

  • Provenzano MR, Oliveira SC, Silva MRS, Senesi N (2001) Assessment of maturity degree of composts from domestic solid wastes by fluorescence and fourier transform infrared spectroscopies. J Agric Food Chem 49:5874–5879

    Article  PubMed  CAS  Google Scholar 

  • Quaggiotti S, Ruperti B, Pizzeghello D, Francioso O, Tugnoli V, Nardi S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J Exp Bot 55:803–813

    Article  PubMed  CAS  Google Scholar 

  • Spaccini R, Piccolo A (2009) Molecular characteristics of humic acids extracted from compost at increasing maturity stages. Soil Biol Biochem 41:1164–1172

    Article  CAS  Google Scholar 

  • Spaccini R, Piccolo A, Haberhauer G, Geerbazek MH (2000) Transformations of organic matter from maize residues into labile and humic fractions of three European soils as revealed by 13C distribution and CPMAS-NMR spectra. Eur J Soil Sci 51:583–594

    Google Scholar 

  • Trevisan S, Francioso O, Quaggiotti S, Nardi S (2010) Humic substances biological activity at the plant-soil interface from environmental aspects to molecular factors. Plant Signal Behav 5(6):635–643

    Article  PubMed  CAS  Google Scholar 

  • Varanini Z, Pinton R, De Biase MG, Astolfi S, Maggioni A (1993) Low molecular weight humic substances stimulate H+-ATPase activity of plasma membrane vesicles isolated from oat (Avena sativa L.) roots. Plant Soil 153:61–69

    Article  CAS  Google Scholar 

  • Vinceslas-Akpa M, Loquet M (1997) Organic matter transformations in lignocellulosic waste products composted or vermicomposted (Eisenia fetida Andrei): chemical analysis and 13C CPMAS NMR spectroscopy. Soil Biol Biochem 29:751–758

    Article  CAS  Google Scholar 

  • Zaller JG (2007) Vermicompost in seedling potting media can affect germination, biomass allocation, yields and fruit quality of three tomato varieties. Eur J Soil Biol 43:S332–S336

    Article  Google Scholar 

  • Zandonadi DB, Canellas LP, Façanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225:1583–1595

    Article  PubMed  CAS  Google Scholar 

  • Zucconi F, Monaco A, Debertoldi M (1981) Biological evaluation of compost maturity. Biocycle 22:27–29

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), International Foundation of Science(IFS) and National Institute of Science and Technology (INCT) for biological nitrogen fixation, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano P. Canellas.

Additional information

Responsible Editor: Ingrid Koegel-Knabner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguiar, N.O., Olivares, F.L., Novotny, E.H. et al. Bioactivity of humic acids isolated from vermicomposts at different maturation stages. Plant Soil 362, 161–174 (2013). https://doi.org/10.1007/s11104-012-1277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1277-5

Keywords

Navigation