Skip to main content
Log in

Identification of genes induced in proteoid roots of white lupin under nitrogen and phosphorus deprivation, with functional characterization of a formamidase

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

White lupin (Lupinus albus L.) is considered a model system for understanding plant acclimation to nutrient deficiency. It acclimates to phosphorus (P) and iron (Fe) deficiency by the development of short, densely clustered lateral roots called proteoid (or cluster) roots; proteoid-root development is further influenced by nitrogen (N) supply. In an effort to better understand proteoid root function under various nutrient deficiencies, we used nylon filter arrays to analyze 2,102 expressed sequence tags (ESTs) from proteoid roots of P-deficient white lupin. These have been previously analyzed for up-regulation in −P proteoid roots, and were here analyzed for up-regulation in proteoid roots of N-deprived plants. We identified a total of 19 genes that displayed up-regulation in proteoid roots under both P and N deprivation. One of these genes showed homology to putative formamidases. The corresponding open reading frame was cloned, overexpressed in E. coli, and the encoded protein was purified; functional characterization of the recombinant protein confirmed formamidase activity. Though many homologues of bacterial and fungal formamidases have been identified in plants, to our knowledge, this is the first report of a functional characterization of a plant formamidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bi Y, Wang R, Zhu T, Rothstein S (2007) Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genom 8:281

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L (2008) Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. J Exp Bot 59:2479–2497

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  PubMed  CAS  Google Scholar 

  • Cossins E, Chen L (1997) Folates and one-carbon metabolism in plants and fungi. J Phytochem 45:437–452

    Article  CAS  Google Scholar 

  • Dinkelaker B, Hengeler C and Marschner H 1995 Distribution and function of proteoid roots and other root clusters. Bot Acta 183–200

  • Dudoit S, Yang Y, Callow M, Speed T (2002) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin 12:111–140

    Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Prot Sci 8:978–984

    Article  CAS  Google Scholar 

  • Ferber D, Khambaty F, ELY B (1988) Utilization of histidine by Caulobacter crescentus. J Gen Microbiol 134:2149

    PubMed  CAS  Google Scholar 

  • Fournand D, Arnaud A (2001) Aliphatic and enantioselective amidases: from hydrolysis to acyl transfer activity. J Appl Microbiol 91:381–393

    Article  PubMed  CAS  Google Scholar 

  • Fraser J, Davis M, Hynes M (2001) The formamidase gene of Aspergillus nidulans: regulation by nitrogen metabolite repression and transcriptional interference by an overlapping upstream gene. Genetics 157:119–131

    PubMed  CAS  Google Scholar 

  • Gilbert G, Knight J, Vance C, Allan D (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810

    Article  CAS  Google Scholar 

  • Gravitz N, Gleye L (1975) A photochemical side reaction that interferes with the phenolhypochlorite assay for ammonia. Limno Oceanogr 20:1015–1017

    Article  CAS  Google Scholar 

  • Hagström J, James W, Skene K (2001) A comparison of structure, development and function in cluster roots of Lupinus albus L. under phosphate and iron stress. Plant Soil 232:81–90

    Article  Google Scholar 

  • Hammond J, White P (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Park K, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–587

    Article  PubMed  Google Scholar 

  • Hynes M (1975) Amide utilization in Aspergillus nidulans: evidence for a third amidase enzyme. J Gen Microbiol 91:99–109

    PubMed  CAS  Google Scholar 

  • Johnson J, Allan D, Vance C, Weiblen G (1996a) Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Plant Physiol 112:19–30

    Article  PubMed  CAS  Google Scholar 

  • Johnson J, Vance C, Allan D (1996b) Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol 112:31–41

    Article  PubMed  CAS  Google Scholar 

  • Kunz D, Wang C, Chen J (1994) Alternative routes of enzymic cyanide metabolism in Pseudomonas fluorescens NCIMB 11764. Microbiol 140:1705–1712

    Article  CAS  Google Scholar 

  • Lamont B (2003) Structure, ecology and physiology of root clusters – a review. Plant Soil 248:1–19

    Article  CAS  Google Scholar 

  • Liu J, Uhde-Stone C, Li A, Vance C, Allan D (2001) A phosphate transporter with enhanced expression in proteoid roots of white lupin (Lupinus albus L.). Plant Soil 237:257–266

    Article  CAS  Google Scholar 

  • Liu J, Samac D, Bucciarelli B, Allan D, Vance C (2005) Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268

    Article  PubMed  CAS  Google Scholar 

  • Lu P, Zhang F (1995) Mechanism of manganese toxicity induced by P-or Fe-deficiency in Lupinus albus L. Acta Phyt Sin 21:289–294

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press Inc, San Diego

    Google Scholar 

  • Massonneau A, Langlade N, Léon S, Smutny J, Vogt E, Neumann G, Martinoia E (2001) Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Planta 213:534–542

    Article  PubMed  CAS  Google Scholar 

  • Miller S, Liu J, Allan D, Menzhuber C, Fedorova M, Vance C (2001) Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol 127:594–606

    Article  PubMed  CAS  Google Scholar 

  • Misson J, Raghothama K, Jain A, Jouhet J, Block M, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102:11934–11939

    Article  PubMed  CAS  Google Scholar 

  • Ness S (2007) Microarray analysis: basic strategies for successful experiments. Mol Biotech 36:205–219

    Article  CAS  Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots – an underground adaptation for survival in extreme environments. Trens Plant Sci 7:162–167

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. J Plant Nutr 211:121–130

    CAS  Google Scholar 

  • O’Rourke J, Nelson R, Grant D, Schmutz J, Grimwood J, Cannon S, Vance C, Graham M, Shoemaker R (2009) Integrating microarray analysis and the soybean genome to understand the soybeans iron deficiency response. BMC Genom 10:376

    Article  CAS  Google Scholar 

  • Orzack S, Gladstone J (1994) Quantitative genetics of sex ratio traits in the parasitic wasp, Nasonia vitripennis. Genetics 137:211–220

    PubMed  CAS  Google Scholar 

  • Peñaloza E, Corcuera L, Martinez J (2002) Spatial and temporal variation in citrate and malate exudation and tissue concentration as affected by P stress in roots of white lupin. Plant Soil 241:209–221

    Article  Google Scholar 

  • Price J, Laxmi A, St Martin S, Jang J (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. CSHL press

  • Sas L, Rengel Z, Tang C (2001) Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency. Plant Sci 160:1191–1198

    Article  PubMed  CAS  Google Scholar 

  • Sas L, Rengel Z, Tang C (2002) The effect of nitrogen nutrition on cluster root formation and proton extrusion by Lupinus albus. Ann Bot 89:435–442

    Article  PubMed  CAS  Google Scholar 

  • Scheible W, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi M, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen 1. Plant Physiol 136:2483–2499

    Article  PubMed  CAS  Google Scholar 

  • Schulze J, Temple G, Temple S, Beschow H, Vance C (2006) Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot 98:731–740

    Article  PubMed  CAS  Google Scholar 

  • Shane M, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    Google Scholar 

  • Silman N, Carver M, Jones C (1991) Directed evolution of amidase in Methylophilus methylotrophus; purification and properties of amidases from wild-type and mutant strains. J Gen Microbiol 137:169

    CAS  Google Scholar 

  • Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440

    Article  PubMed  CAS  Google Scholar 

  • Skouloubris S, Labigne A, De Reuse H (1997) Identification and characterization of an aliphatic amidase in Helicobacter pylori. Mol Microbiol 25:989–998

    Article  PubMed  CAS  Google Scholar 

  • Skouloubris S, Labigne A, De Reuse H (2001) The AmiE aliphatic amidase and AmiF formamidase of Helicobacter pylori: natural evolution of two enzyme paralogues. Mol Microbiol 40:596–609

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Itai R, Nakanishi H, Nishizawa N, Yoshimura E, Mori S (1998) Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by iron deficiency in barley roots. Plant Physiol 116:725–732

    Article  PubMed  CAS  Google Scholar 

  • Thimm O, Essigmann B, Kloska S, Altmann T, Buckhout T (2001) Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol 127:1030–1043

    Article  PubMed  CAS  Google Scholar 

  • Uhde-Stone C, Zinn K, Ramirez-Yáñez M, Li A, Vance C, Allan D (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol 131:1064–1079

    Article  PubMed  CAS  Google Scholar 

  • Uhde-Stone C, Liu J, Zinn K, Allan D, Vance C (2005) Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress. Plant J 44:840–853

    Article  PubMed  CAS  Google Scholar 

  • Vance C (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resourse. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:0034

    Article  Google Scholar 

  • Watson M, Dukes J, Abu-Median A, King D, Britton P (2007) DetectiV: visualization, normalization and significance testing for pathogen-detection microarray data. Genome Biol 8:R190

    Article  PubMed  CAS  Google Scholar 

  • Welch R, Graham R (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  PubMed  CAS  Google Scholar 

  • Wyborn N, Mills J, Williams S, Jones C (1996) Molecular characterisation of formamidase from Methylophilus methylotrophus. Eur J Biochem 240:314–322

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Yamagishi M, Osaki M, Masuda K (2008) Sugar signalling mediates cluster root formation and phosphorus starvation-induced gene expression in white lupin. J Exp Bot 59:2749–2756

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this project has been provided by the National Institutes of Health MBRS-Score Grant SO6 GM48135. The authors wish to thank the 2008 Functional Genomics class at California State University East Bay for their help in RT-qPCR confirmation of selected genes, and Chris Baysdorfer (Department of Biological Sciences, CSU East Bay) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Uhde-Stone.

Additional information

Responsible Editor: Michael Denis Cramer.

Mousumi Rath, Jay Salas, Bandita Parhy and Robert Norton contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table s1

359 unigenes displayed at least 2-fold increase of transcript abundance in –N, compared to +N proteoid roots (XLS 325 kb)

Table s2

27 unigenes displayed 0.5-fold or less transcript abundance in –N, compared to +N proteoid roots (XLS 30 kb)

Table s3

A complete list of normalized array data comparing transcript abundance of 2121 white lupin ESTs in –N and +N proteoid roots, sorted by contigs (XLS 1256 kb)

Table s4

A complete list of signal intensities (raw data) of 2121 white lupin ESTs in –N and +N proteoid roots (XLS 670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rath, M., Salas, J., Parhy, B. et al. Identification of genes induced in proteoid roots of white lupin under nitrogen and phosphorus deprivation, with functional characterization of a formamidase. Plant Soil 334, 137–150 (2010). https://doi.org/10.1007/s11104-010-0373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0373-7

Keywords

Navigation