Skip to main content
Log in

Analysing the role of soil properties, initial biomass and ozone on observed plant growth variability in a lysimeter study

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

This simulation study is based on a lysimeter experiment with juvenile beech trees (Fagus sylvatica L.) which were grown under ambient or doubled ambient atmospheric ozone concentrations. The aim of the study was to analyze the role of differences in soil properties, differences in initial biomass and ozone impacts on observed plant growth variability at the eight lysimeters of this experiment. For this purpose, we established a new simulation model based on the model system Expert-N by coupling soil water and nitrogen transport models with the plant growth model PLATHO, which was already tested and applied for juvenile beech. In order to parameterize the soil model, for all lysimeters soil hydraulic parameters as well as carbon and nitrogen stocks were measured. Simulation results reveal that the observed decreased growth rates under elevated ozone are due to ozone impacts on plant growth, whereas the high plant growth variability between lysimeters is to a major part the consequence of differences in soil hydraulic properties. Differences in initial biomass are of minor importance to explain plant growth variability in this experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen RG (2000) Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J Hydrol 229:27–41

    Article  Google Scholar 

  • Chen CW, Tsai WT, Lucier AA (1998) A model of air-tree-soil system for ozone impact analysis. Ecol Model 111:207–222

    Article  CAS  Google Scholar 

  • Deckmyn G, Op de Beeck M, Löw M, Then C, Verbeeck H, Wipfler P, Ceulemans R (2007) Modelling ozone effects on adult beech trees through simulation of defence, damage, and repair costs: implementation of the CASIROZ ozone model in the ANAFORE forest model. Plant Biol 9:320–330

    Article  CAS  PubMed  Google Scholar 

  • Dewar RC (2002) The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. Plant Cell Environ 25(11):1383–1398

    Article  Google Scholar 

  • Dizengremel P (2001) Effects of ozone on the carbon metabolism of forest trees. Plant Physiol Biochem 39(9):729–742

    Article  CAS  Google Scholar 

  • Emberson LD, Ashmore MR, Cambridge HM, Simpson D, Tuovinen JP (2000) Modelling stomatal ozone flux across Europe. Environ Pollut 109(3):403–413

    Article  CAS  PubMed  Google Scholar 

  • Falge E, Graber W, Siegwolf R, Tenhunen JD (1996) A model of the gas exchange response of Picea abies to habitat conditions. Trees 10:277–287

    Google Scholar 

  • Fleischmann F, Schneider D, Matyssek R, Oßwald WF (2002) Investigations on net CO2 assimilation, transpiration and root growth of Fagus sylvatica infested with four different Phytophthora species. Plant Biol 4(2):144–152

    Article  Google Scholar 

  • Fleischmann F, Koehl J, Portz R, Beltrame AB, Oßwald W (2005) Physiological changes of Fagus sylvatica seedlings infected with Phytophthora citricola and the contribution of its elicitin Citricolin to pathogenesis. Plant Biol 7:650–658

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann F, Winkler JB, Oßwald W (2009) Effects of ozone and Phytophthora citricola root infection on carbon partitioning in European beech (Fagus sylvatica). Plant Soil (this issue). doi:10.1007/s11104-009-9927-y

    Google Scholar 

  • Gayler S, Priesack E (2005) PLATHO-documentation. http://www.sfb607.de/english/projects/c2/platho.pdf

  • Gayler S, Priesack E (2007) PLATHO - a dynamic plant growth model considering competition between individuals and allocation to carbon-based secondary compounds. In: Fourcaud T, Zhang X (eds) Proceedings of PMA06—plant growth modeling and applications, Beijing, China, 13–17 November 2006. IEEE Comp Soc, Los Alamitos, California, pp 85–92

    Google Scholar 

  • Gayler S, Grams TEE, Kozovits A, Luedemann G, Winkler JB, Priesack E (2006) Analysis of competition effects in mono- and mixed cultures of juvenile beech and spruce by means of the plant growth simulation model PLATHO. Plant Biol 8(4):503–514

    Article  CAS  PubMed  Google Scholar 

  • Gayler S, Grams TEE, Heller W, Treutter D, Priesack E (2008) A dynamical model of environmental effects on allocation to carbon-based secondary compounds in juvenile trees. Ann Bot 101(8):1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Grams TEE, Anegg S, Häberle KH, Langebartels C, Matyssek R (1999) Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European Beech (Fagus sylvatica). New Phytol 144(1):95–107

    Article  CAS  Google Scholar 

  • Hutson JL, Wagenet RJ (1992) LEACHM: leaching estimation and chemistry model: a process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone. Version 3.0. Research Series No. 93-3. Cornell University, Ithaca, NY

    Google Scholar 

  • Johnsson H, Bergström L, Jansson PE, Paustian K (1987) Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric Ecosyst Environ 18:333–356

    Article  Google Scholar 

  • King JS, Kubiske ME, Pregitzer KS, Hendrey GR, McDonald EP, Giardina CP, Quinn VS, Karnosky DF (2005) Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytol 168(3):623–636

    Article  CAS  PubMed  Google Scholar 

  • Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: laboratory methods. In: Klute A (ed) Methods of soil analysis part I: physical and mineralogical methods. Agronomy 9, A. Soc. Of Agronomy, Inc., Soil Sci. Soc. Am., Inc., Madison, Wisconsin USA, pp 687–733

  • Koch N (2006) Scaling within ontogenetic stages and growth scenarios of beech (Fagus sylvatica) and spruce (Picea abies) under ozone exposure. Thesis (in German). http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss20060210-1615467692. TU München, Fakultät Wissenschaftszentrum Weihenstephan

  • Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and O3 levels throughout two subsequent growing seasons. Glob Chang Biol 11:1387–1401

    Article  Google Scholar 

  • Kreutzer K, Bittersohl J (1986) Untersuchungen über die Auswirkungen des sauren Regens und der kompensatorischen Kalkung im Wald. Forstw Cbl 105:273–282

    Article  Google Scholar 

  • Kropff MJ, van Laar HH (eds) (1993) Modelling crop-weed interactions. CAB International, Wallingford, UK

    Google Scholar 

  • Loos C, Gayler S, Priesack E (2007) Assessment of water balance simulations for large-scale weighing lysimeters. J Hydrol 335:259–270

    Article  Google Scholar 

  • Löw M, Häberle KH, Warren CR, Matyssek R (2007) O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure. Plant Biol 9:197–206

    Article  PubMed  Google Scholar 

  • Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects, host/pathogen interaction, and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infested with Phytophthora citricola. Plant Biol 7:640–649

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Thiec DL, Löw M, Dizengremel P, Nunn AJ, Häberle KH (2006) Interactions between drought and O3 stress in forest trees. Plant Biol 8:11–17

    Article  CAS  PubMed  Google Scholar 

  • Monteith J (1965) Evaporation and the environment. Proc Sympos Soc Exp Biol 19:205–234

    CAS  Google Scholar 

  • Mueller CW, Brüggemann N, Pritsch K, Stoelken G, Gayler S, Winkler JB, Kögel-Knabner I (2009) Initial differentiation of vertical soil organic matter distribution and composition under juvenile beech trees. Plant Soil (this issue). doi:10.1007/s11104-009-9932-1

    Google Scholar 

  • Müller J, Wernecke P, Diepenbrock W (2005) LEAFC3-N: a nitrogen-sensitive extension of the CO2 and H2O gas exchange model LEAFC3 parameterised and tested for winter wheat (Triticum aestivum L.). Ecol Model 183:183–210

    Article  Google Scholar 

  • Musselman RC, Massman WJ (1999) Ozone flux to vegetation and its relationship to plant response and ambient air quality standards. Atmos Environ 33(1):65–73

    Article  CAS  Google Scholar 

  • Nunn AJ, Reiter I, Häberle KH, Langebartels C, Bahnweg G, Pretzsch H, Sandermann H, Matyssek R (2005) Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environ Pollut 136:365–369

    Article  CAS  PubMed  Google Scholar 

  • Olbrich M, Gerstner E, Welzl G, Winkler JB, Ernst D (2009) Transcript analysis in leaves of ozone-treated beech saplings at an outdoor free air fumigation site. Plant Soil (this issue)

  • Op de Beeck M, Löw M, Verbeeck H, Deckmyn G (2007) Suitability of a combined stomatal conductance and photosynthesis model for calculation of leaf-level ozone fluxes. Plant Biol 9:331–341

    Article  Google Scholar 

  • Plöchl M, Lyons T, Ollerenshaw J, Barnes J (2000) Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate. Planta 210:454–467

    Article  PubMed  Google Scholar 

  • Priesack E (2006) Expert-N - dokumentation der modellbibliothek. FAM-Bericht 60, Hieronymus Verlag, München

  • Pritsch K, Ernst D, Fleischmann F, Gayler S, Grams TEE, Göttlein A, Heller W, Koch N, Lang H, Matyssek R, Munch JC, Olbrich M, Scherb H, Stich S, Winkler JB, Schloter M (2008) Plant and soil system responses to ozone after 3 years in a lysimeter study with juvenile beech (Fagus sylvatica L.). Water Air Soil Pollut: Focus 8(2):139–154

    Article  CAS  Google Scholar 

  • Rennenberg H, Kreutzer K, Papen H, Weber P (1998) Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. New Phytol 139(1):71–86

    Article  CAS  Google Scholar 

  • Schloter M, Winkler JB, Aneja M, Koch N, Fleischmann F, Pritsch K, Heller W, Stich S, Grams TEE, Göttlein A, Matyssek R, Munch JC (2005) Short term effects of ozone on the plant–rhizosphere–bulk soil system of young Beech trees. Plant Biol 7:728–736

    Article  CAS  PubMed  Google Scholar 

  • Schwinning S (1996) Decomposition analysis of competitive symmetry and size structure dynamics. Ann Bot 77:47–58

    Article  Google Scholar 

  • Seyfarth M, Reth S (2008) Lysimeter soil retriever (LSR)—an application of a new technique for retrieving soils from lysimeters. Water Air Soil Pollut: Focus 8:227–231

    Article  Google Scholar 

  • Simunek J, Huang K, Van Genuchten MT (1998) The HYDRUS code for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 6.0. Technical report 144. Salinity Laboratory, USDA, Riverside, CA

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Google Scholar 

  • van Oijen M, Dreccer MF, Firsching KH, Schnieders BJ (2004) Simple equations for dynamic models of the effect of CO2 and O3 on light-use efficiency and crop growth. Ecol Model 179:39–60

    Article  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Wallach D, Goffinet B (1989) Mean squared error of prediction as a criterion for evaluating and comparing system models. Ecol Model 44:299–306

    Article  Google Scholar 

  • Weinstein DA, Beloin RM, Yanai RD (1991) Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stresses. Tree Physiol 9:127–146

    CAS  PubMed  Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 64:1309–1313

    Article  Google Scholar 

  • Winkler JB, Fleischmann F, Gayler S, Grams TEE, Scherb H, Matyssek R (2009a) Do chronic aboveground O3 exposure and below-ground pathogen stress affect growth of young beech trees (Fagus sylvatica L.)? Plant Soil (this issue). doi:10.1007/s11104-009-9968-2

    Google Scholar 

  • Winkler JB, Lang H, Graf W, Munch JC (2009b) Experimental setup on field lysimeters for studying effects of elevated ozone and below-ground pathogen infection on a plant–soil-system of juvenile beech (Fagus sylvatica L.). Plant Soil (this issue). doi:10.1007/s11104-009-9936-x

    Google Scholar 

  • Wipfler P, Seifert T, Heerdt C, Werner H, Pretzsch H (2005) Growth of adult Norway Spruce (Picea abies [L.] Karst.) and European Beech (Fagus sylvatica L.) under free-air ozone fumigation. Plant Biol 7:611–618

    Article  CAS  PubMed  Google Scholar 

  • Wolf J, Oijen MV (2003) Model simulation of effects of changes in climateand atmospheric CO2 and O3 on tuber yield potential of potato (cv. Bintje) in the European Union. Agric Ecosyst Environ 94:141–157

    Article  CAS  Google Scholar 

  • Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr 4:63

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft which funded this study within the frame of Sonderforschungsbereich 607 Growth and Parasite Defence—Competition for Resources in Economic Plants from Forestry and Agronomy.

We further thank Dr. Thorsten Grams for providing above ground biomass and stem diameter data, Wolfgang Graf, Hans Lang and Oliver Gefke for providing climate and soil water balance data as well as Dr. Frank Fleischmann, Dr. Felix Haesler, Dr. Jürgen Esperschütz, Gunda Stoelken, Gudrun Hufnagel, Monika Kugelmann, Wolfgang Eigner, Marcus Lehmann, Josef Heckmair and Tina Schmidt for digging soil cores and roots out of approximately 30,000 kg loam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gayler.

Additional information

Responsible Editor: Johan Six.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gayler, S., Klier, C., Mueller, C.W. et al. Analysing the role of soil properties, initial biomass and ozone on observed plant growth variability in a lysimeter study. Plant Soil 323, 125–141 (2009). https://doi.org/10.1007/s11104-009-9993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9993-1

Keywords

Navigation