Skip to main content
Log in

Contrasting ozone × pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Based on the growth-differentiation balance theory (GDB) and the influence of tropospheric ozone (O3) on plants, we hypothesized that pre-conditioning with elevated O3 reduces adverse effects of the root rot pathogen Phytophthora citricola Sawada. To this end a 2-year phytotron study with juvenile European beech (Fagus sylvatica L.) and (Picea abies [L.] Karst.) grown in mixture was performed. The hypothesis was tested on phenological, leaf and root morphological as well as physiological aspects of plant performance. Contrasting with spruce, elevated O3 limited leaf and root biomass development, photosynthetic performance and N uptake of beech. The growth limitation by O3 conveyed increased resistance in beech against the pathogen. Conversely, spruce displayed enhanced susceptibility in the combined O3/P. citricola treatment. The hypothesis was supported in the case of beech rather than spruce. Nevertheless, conclusions support GDB regarding the trade-off between growth and stress defense, although compliance appears to be species-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrios GN (2005) Plant pathology. Elsevier, Burlington, MA, p 922

    Google Scholar 

  • Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228. doi:10.1046/j.1469-8137.2003.00674.x

    Article  CAS  Google Scholar 

  • Arendt JD (1997) Adaptive intrinsic growth rates: an integration across taxa. Q Rev Biol 72:149. doi:10.1086/419764

    Article  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. doi:10.1146/annurev.arplant.59.032607.092759

    Article  CAS  PubMed  Google Scholar 

  • Bennett AE, Alers-Garcia J, Bever JD (2006) Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. Am Nat 167:141–152. doi:10.1086/499379

    Article  PubMed  Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant pathogen interactions. J Exp Bot 58:4019–4026. doi:10.1093/jxb/erm298

    Article  CAS  PubMed  Google Scholar 

  • Bonello P, Heller W, Sandermann H (1993) Ozone effects on root-disease susceptibility and defense responses in mycorrhizal and nonmycorrhizal seedlings of Scots pine (Pinus sylvestris L). New Phytol 124:653–663. doi:10.1111/j.1469-8137.1993.tb03855.x

    Article  CAS  Google Scholar 

  • Booker FL (2000) Influence of carbon dioxide enrichment, ozone and nitrogen fertilization on cotton (Gossypium hirsutum L.) leaf and root composition. Plant Cell Environ 23:573–583. doi:10.1046/j.1365-3040.2000.00576.x

    Article  CAS  Google Scholar 

  • Cahill DM, McComb JA (1992) A comparison of changes in phenylalanine ammonia-lyase activity, lignin and phenolic synthesis in the roots of Eucalyptus calophylla (field resistant) and E. marginata (susceptible) when infected with Phytophthora cinnamomi. Physiological and Molecular Plant Pathology 40:315–332

    Google Scholar 

  • Chakraborty S, Luck J, Hollaway G, Freeman A, Norton R, Garrett KA, Percy K, Hopkins A, Davis C, Karnosky DF (2008) Impacts of global change on diseases of agricultural crops and forest trees. CAB Reviews 3:1–15

    Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. The American Phytopathological Society, St. Paul, p 592

    Google Scholar 

  • Fleischmann F, Schneider D, Matyssek R, Oßwald W (2002) Investigations on net CO2 assimilation, transpiration and root growth of Fagus sylvatica infested with four different Phytophthora species. Plant Biol 4:144–152. doi:10.1055/s-2002-25728

    Article  Google Scholar 

  • Fleischmann F, Göttlein A, Rodenkirchen H, Lütz C, Oßwald W (2004) Biomass, nutrient and pigment content of beech (Fagus sylvatica) saplings infected with Phytophthora citricola, P. cambivora, P. pseudosyringae and P. undulata. For Pathol 34:79–92. doi:10.1111/j.1439-0329.2004.00349.x

    Google Scholar 

  • Grantz DA, Farrar JF (2000) Ozone inhibits phloem loading from a transport pool: compartmental efflux analysis in Pima cotton. Aust J Plant Physiol 27:859–868

    CAS  Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509. doi:10.1146/annurev.phyto.44.070505.143420

    Article  CAS  PubMed  Google Scholar 

  • Gayler S, Grams TEE, Heller W, Treutter D, Priesack E (2008) Modeling environmental effects on allocation to carbon-based secondary compounds in juvenile trees. Ann Bot (Lond) 101:1089–1098. doi:10.1093/aob/mcm169

    Article  CAS  Google Scholar 

  • Glynn C, Herms DA, Orians CM, Hansen RC, Larsson S (2007) Testing the growth-differentiation balance hypothesis: dynamic responses of willows to nutrient availability. New Phytol 176:623–634. doi:10.1111/j.1469-8137.2007.02203.x

    Article  CAS  PubMed  Google Scholar 

  • Grams TEE, Andersen CP (2007) Competition for resources in trees: Physiological versus morphological plasticity. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in Botany. Springer-Verlag, Berlin, Heidelberg, pp 356–381

    Chapter  Google Scholar 

  • Grams TEE, Matyssek R (2009) Stable isotope signatures reflect competitiveness between trees under changed CO2/O3 regimes. Environ Pollut (submitted)

  • Grams TEE, Anegg S, Häberle K-H, Langebartels C, Matyssek R (1999) Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica). New Phytol 144:95–107. doi:10.1046/j.1469-8137.1999.00486.x

    Article  CAS  Google Scholar 

  • Grams TEE, Kozovits AR, Reiter IM, Winkler JB, Sommerkorn M, Blaschke H, Häberle K-H, Matyssek R (2002) Quantifying competitiveness in woody plants. Plant Biol 4:153–158. doi:10.1055/s-2002-25729

    Article  Google Scholar 

  • Grams TEE, Kozovits AR, Häberle K-H, Matyssek R, Dawson TE (2007) Combining δ13C and δ18O analyses to unravel competition, CO2 and O3 effects on the physiological performance of different-aged trees. Plant Cell Environ 30:1023–1034. doi:10.1111/j.1365-3040.2007.01696.x

    Article  CAS  PubMed  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169. doi:10.1086/283244

    Article  Google Scholar 

  • Haberer K, Herbinger K, Alexou M, Tausz M, Rennenberg H (2007) Antioxidative defense of old growth beech (Fagus sylvatica) under double ambient O3 concentrations in a free-air exposure system. Plant Biol 9:215–226. doi:10.1055/s-2007-964824

    Article  CAS  PubMed  Google Scholar 

  • Häberle K-H (1995) Wachstumsverhalten und Wasserhaushaltes eines Fichtenklones (Picea abies [L.] Karst.) unter erhöhten CO2 und O3-Gehalten in der Luft bei variierter Stickstoff- und Wasserversorgung. In: Lehrstuhl für Bodenkunde und Standortslehre. Ludwig-Maximilians-Universität München, Munich, p 135

  • Heagle AS (1973) Interactions between air pollutants and plant parasites. Annu Rev Phytopathol 11:365–388. doi:10.1146/annurev.py.11.090173.002053

    Article  CAS  Google Scholar 

  • Heil M, Baldwin IT (2002) Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7:61–67. doi:10.1016/S1360-1385(01)02186-0

    Article  CAS  PubMed  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants—to grow or defend. Q Rev Biol 67:283–335. doi:10.1086/417659

    Article  Google Scholar 

  • Jung T, Blaschke H (1996) Phytophthora root rot in declining forest trees. Phyton 36:95–101

    Google Scholar 

  • Kozovits AR, Matyssek R, Blaschke H, Göttlein A, Grams TEE (2005a) Competition increasingly dominates the responsiveness of juvenile beech and spruce to elevated CO2 and/or O3 concentrations throughout two subsequent growing seasons. Glob Change Biol 11:1387–1401. doi:10.1111/j.1365-2486.2005.00993.x

    Article  Google Scholar 

  • Kozovits AR, Matyssek R, Winkler JB, Göttlein A, Blaschke H, Grams TEE (2005b) Above-ground space sequestration determines competitive success in juvenile beech and spruce trees. New Phytol 167:181–196. doi:10.1111/j.1469-8137.2005.01391.x

    Article  PubMed  Google Scholar 

  • Lefohn AS (1992) Surface level ozone exposures and their effects on vegetation. Lewis, Chelsea, p 366

    Google Scholar 

  • Lippert M, Häberle K-H, Steiner K, Payer H-D, Rehfuess KE (1996) Interactive effects of elevated CO2 and O3 on photosynthesis and biomass production of clonal 5-year-old Norway spruce [Picea abies (L) Karst] under different nitrogen nutrition and irrigation treatments. Trees—structure and function 10:382–392

    Google Scholar 

  • Liu X, Kozovits AR, Grams TEE, Blaschke H, Rennenberg H, Matyssek R (2004) Competition modifies effects of enhanced ozone/carbon dioxide concentrations on the carbohydrate and biomass accumulation in juvenile Norway spruce and European beech. Tree Physiology 24: 1045–1055

    Google Scholar 

  • Loomis WE (1932) Growth-differentiation balance vs. carbohydrate-nitrogen ratio. Am Soc Hortic Sci 29:240–245

    CAS  Google Scholar 

  • Loomis WE (1953a) The growth-differentiation: An introduction and summary. In: Loomis WE (ed) Growth, differentiation in plants. IA State Coll Press, Ames, Iowa, pp 1–17

    Google Scholar 

  • Loomis WE (1953b) Growth correlation. In: Loomis WE (ed) Growth, differentiation in plants. IA State Coll Press, Ames, Iowa, pp 196–216

    Google Scholar 

  • Löw M, Häberle K-H, Warren CR, Matyssek R (2007) O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure. Plant Biol 9:197–206. doi:10.1055/s-2006-924656

    Article  PubMed  CAS  Google Scholar 

  • Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen on juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649. doi:10.1055/s-2005-872902

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: An ecophysiological perspective. In: Esser K, Lüttge U, Beyschlag W, Hellwig F (eds) Progress in botany. Springer Verlag, Berlin, Heidelberg, pp 349–404

    Google Scholar 

  • Matyssek R, Günthardt-Goerg MS, Saurer M, Keller T (1992) Seasonal growth, δ13C in leaves and stem, and phloem structure of birch (Betula pendula) under low ozone concentrations. Trees—structure and function 6:69–76

    Google Scholar 

  • Matyssek R, Agerer R, Ernst D, Munch JC, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005a) The plant’s capacity an regulating resource demand. Plant Biol 7:560–580. doi:10.1055/s-2005-872981

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Schnyder H, Munch JC, Oßwald W, Pretzsch H, Treutter D (2005b) Resource allocation in plants—The balance between resource sequestration and retention. Plant Biol 7:557–559. doi:10.1055/s-2005-873000

    Article  Google Scholar 

  • Matyssek R, Bahnweg G, Ceulemans R, Fabian P, Grill D, Hanke DE, Kraigher H, Oßwald W, Rennenberg H, Sandermann H, Tausz M, Wieser G (2007) Synopsis of the CASIROZ case study: Carbon sink strength of Fagus sylvatica L. in a changing environment—Experimental risk assessment of mitigation by chronic ozone impact. Plant Biol 9:163–180. doi:10.1055/s-2007-964883

    Article  CAS  PubMed  Google Scholar 

  • Nechwatal J, Oßwald W (2001) Comparative studies on the fine root status of healthy and declining spruce and beech trees in the Bavarian Alps and occurrence of Phytophthora and Pythium species. For Pathol 31:257–273. doi:10.1046/j.1439-0329.2001.00244.x

    Google Scholar 

  • Nunn AJ, Reiter IM, Häberle K-H, Langebartels C, Bahnweg G, Pretzsch H, Sandermann H, Matyssek R (2005) Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies. Environ Pollut 136:365–369. doi:10.1016/j.envpol.2005.01.024

    Article  CAS  PubMed  Google Scholar 

  • Payer H-D, Blodow P, Köfferlein M, Lippert M, Schmolke W, Seckmeyer G, Seidlitz H, Strube D, Thiel S (1993) Controlled environment chambers for experimental studies on plant responses to CO2 and interactions with pollutants. In: Schulze E-D, Mooney H (eds) Design, execution of experiments on CO2 enrichment. Commission European Communities, Brussels, pp 127–145

    Google Scholar 

  • Pretzsch H, Kahn M, Grote R (1998) Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches “Wachstum oder Parasitenabwehr?” im Kranzberger Forst European Journal of Forest Research 117:241-257

    Google Scholar 

  • Pritsch K, Luedemann G, Matyssek R, Hartmann A, Schloter M, Scherb H, Grams TEE (2005) Mycorrhizosphere responsiveness to atmospheric ozone and inoculation with Phytophthora citricola in a phytotron experiment with spruce/beech mixed cultures. Plant Biol 7:718–727. doi:10.1055/s-2005-872972

    Article  CAS  PubMed  Google Scholar 

  • Rizzo DM, Garbelotto M (2003) Sudden oak death: endangering California and Oregon forest ecosystems. Front Ecol Environ 1:197–204

    Article  Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50. doi:10.1016/S1360-1385(97)01162-X

    Article  Google Scholar 

  • Schwinning S (1996) Decomposition analysis of competitive symmetry and size structure dynamics. Annals of Botany 77: 47–57

    Google Scholar 

  • Skärby L, Ro-Poulsen H, Wellburn FAM, Sheppard LJ (1998) Impacts of ozone on forests: a European perspective. New Phytol 139:109–122. doi:10.1046/j.1469-8137.1998.00184.x

    Article  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55. doi:10.1086/367580

    Article  PubMed  Google Scholar 

  • Stamp N (2004) Can the growth-differentiation balance hypothesis be tested rigorously? Oikos 107:439–448. doi:10.1111/j.0030-1299.2004.12039.x

    Article  Google Scholar 

  • Szantoi Z, Chappelka AH, Muntifring RB, Somers GL (2007) Use of ethylenediurea (EDU) to ameliorate ozone effects on purple coneflower (Echinacea purpurea). Environ Pollut 150:200–208. doi:10.1016/j.envpol.2007.01.020

    Article  CAS  PubMed  Google Scholar 

  • Tomova L, Braun S, Flückiger W (2005) The effect of nitrogen fertilization on fungistatic phenolic compounds in roots of beech (Fagus sylvatica) and Norway spruce (Picea abies). For Pathol 35:262–276. doi:10.1111/j.1439-0329.2005.00406.x

    Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi:10.1007/BF00384257

    Article  Google Scholar 

  • Walters DR, Bingham IJ (2007) Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann Appl Biol 151:307–324. doi:10.1111/j.1744-7348.2007.00176.x

    Article  CAS  Google Scholar 

  • Werres S (1995) Influence of the Phytophthora isolate and the seed source on the development of beech (Fagus sylvatica) seedling blight. Eur J Forest Pathol 25:381–390. doi:10.1111/j.1439-0329.1995.tb01353.x

    Article  Google Scholar 

  • Winkler JB, Fleischmann F, Gayler S, Matyssek R, Scherb H, Grams TEE (2009) Do chronic aboveground O3 exposure and belowground pathogen stress affect growth of young beech trees (Fagus sylvatica L.)? Plant Soil (this issue)

  • Witzell J, Martin J (2008) Phenolic metabolites in the resistance of Northern forest trees to pathogens—past experiences and future prospects. Can J For Res—Rev Can Rech For 38:2711–2727

    Google Scholar 

Download references

Acknowledgement

The authors are indebted to Drs. H.-D. Payer and H. Seidlitz (Helmholtz Zentrum München, German Research Center for Environmental Health) and their technical staff for excellent and unstinting support during the experiments. Dr. F. Fleischmann (Pathology of Woody Plants, Technische Universität München) is thanked for his phytopathological advice and the introduction of the P. citricola treatment. We gratefully acknowledge the skilful assistance by H. Lohner, J. Lebherz, D. Roller, I. Süß, P. Kuba, T. Schmidt and Ing. T. Feuerbach. The investigation was funded through SFB 607 “Growth and Parasite Defense — Competition for Resources in Economic Plants from Agronomy and Forestry, Project B5” by the “Deutsche Forschungsgemeinschaft” (DFG). G. Luedemann was sponsored by a fellowship from CAPES, Brasília, Brazil in cooperation with DAAD, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. E. Grams.

Additional information

Responsible Editor: Peter A.H. Bakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luedemann, G., Matyssek, R., Winkler, J.B. et al. Contrasting ozone × pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant Soil 323, 47–60 (2009). https://doi.org/10.1007/s11104-009-9945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9945-9

Keywords

Navigation